Period

#1. Sketch the angle  $\theta = \frac{17\pi}{6}$  in standard position.



#2. Convert  $\frac{2\pi}{7}$  to degrees (round to nearest degree)

#3. Convert 198.7° to radians (round to four decimals)

#4. Find <u>two</u> angles (<u>one positive and one negative</u>) that are coterminal to  $-\frac{11\pi}{5}$ .

#5. Find the exact value (use the unit circle) of the following trigonometric functions:



- c.  $\tan\left(\frac{7\pi}{4}\right)$   $=\frac{\sqrt{2}/2}{\sqrt{2}/2} = \boxed{1}$
- #6. Evaluate cos 43°28'. Round your result to four decimals.

#7. Use a calculator to evaluate (round to four decimals):

a. 
$$\tan \frac{2\pi}{7} = 1.25396$$

b. 
$$\sec 2.4 = \frac{1}{\cos 2.4} = \frac{1}{-.73739} = \frac{1}{1.3561}$$

#8. What is the complement of  $\frac{3\pi}{14}$ ?

#9. What is the supplement of  $\frac{11\pi}{15}$ ?

#10. If  $\sin \theta > 0$  and  $\cot \theta < 0$ , in which quadrant does  $\theta$  lie?





If  $\cos \theta = 0.673$ , find <u>two</u> values of  $\theta$  to the nearest degree for  $0^{\circ} \le \theta < 360^{\circ}$ 2<sup>rd</sup> angle is acress x-axis



If  $\tan \theta = 1.3544$ , find <u>two</u> values of  $\theta$  to the nearest degree for  $0^{\circ} \le \theta < 360^{\circ}$ #12.



$$\sin\theta = \frac{3}{5} \quad \text{sin}(-\theta) = \boxed{\frac{3}{3}}$$

#15. If (-8, 15) is a point on the terminal side of  $\theta$ , what is  $\sec \theta$ ?

$$Coso = \frac{2}{3} = \frac{8}{19}$$



#16. Given  $\cot \theta = -\frac{15}{8}$  and  $\cos \theta < 0$ , find the **exact values** of  $\sin \theta$  and  $\sec \theta$ .  $\tan \theta = -\frac{8}{15}$   $\cos \theta = \frac{3}{7} = \frac{15}{17}$   $\cos \theta = \frac{3}{7} = \frac{17}{17}$   $\cos \theta = \frac{17}{17}$ 

#17. Given  $\sec \theta = \frac{2\sqrt{3}}{3}$  find the **two exact values** of  $\theta$  for  $0 \le \theta < 2\pi$ 



#18. Find the exact length (answer in terms of pi) of the arc on a circle that has a radius of 12 meters intercepted by a central angle  $\theta = 61^{\circ}$ .

#19. Solve for r. (round answer to 3 decimals)



$$r = \frac{3}{6000} = \frac{3}{51396 \text{ cm}}$$

- #1. Sketch the angle  $\theta = \frac{17\pi}{6}$  in standard position.
- #2. Convert  $\frac{2\pi}{7}$  to degrees (round to nearest degree)
- #3. Convert 198.7° to radians (round to four decimals)
- #4. Find <u>two</u> angles (one positive and one negative) that are coterminal to  $-\frac{11\pi}{5}$ .
- #5. Find the exact value (use the unit circle) of the following trigonometric functions:

  - a.  $\sin\left(\frac{5\pi}{6}\right)$  b.  $\cos\left(\frac{2\pi}{3}\right)$  c.  $\tan\left(\frac{7\pi}{4}\right)$
- #6. Evaluate cos 43°28'. Round your result to four decimals.
- #7. Use a calculator to evaluate (round to four decimals):
  - a.  $\tan \frac{2\pi}{7}$

b. sec 2.4

- #8. What is the complement of  $\frac{3\pi}{14}$ ?
- #9. What is the supplement of  $\frac{11\pi}{15}$ ?
- #10. If  $\sin \theta > 0$  and  $\cot \theta < 0$ , in which quadrant does  $\theta$  lie?

If  $\cos \theta = 0.673$ , find <u>two</u> values of  $\theta$  to the nearest degree for  $0^{\circ} \le \theta < 360^{\circ}$ #11.

If  $\tan \theta = 1.3544$ , find **two** values of  $\theta$  to the nearest degree for  $0^{\circ} \le \theta < 360^{\circ}$ 

#13. If 
$$\csc \theta = \frac{3}{2}$$
, what is  $\sin(-\theta)$ ?

#13. If 
$$\csc \theta = \frac{3}{2}$$
, what is  $\sin(-\theta)$ ? #14. If  $\csc \theta = \frac{3}{4}$ , what is  $\sec(\frac{\pi}{2} - \theta)$ ?

#15. If (-8, 15) is a point on the terminal side of  $\theta$ , what is  $\sec \theta$ ?

#16. Given  $\cot \theta = -\frac{15}{8}$  and  $\cos \theta < 0$ , find the **exact values** of  $\sin \theta$  and  $\sec \theta$ .

#17. Given  $\sec \theta = \frac{2\sqrt{3}}{3}$  find the **two exact values** of  $\theta$  for  $0 \le \theta < 2\pi$ 

#18. Find the exact length (answer in terms of pi) of the arc on a circle that has a radius of 12 meters intercepted by a central angle  $\theta = 61^{\circ}$ .

#19. Solve for r. (round answer to 3 decimals)

