Honors Brief Calculus

Name: \qquad
Curve Sketching Homework (Mr. Felling's classes)

Day 1...

\#1) Add slope and concavity maps

'Add Slope' map:

'Add Concavity' map

a) What is the domain of f ?
f) For what x -values does $f^{\prime}(x)$ not exist?
b) List the intercepts of f ?
g) List the point(s) at which f has a local maximum.
c) On what intervals, if any, is
h) List the point(s) at which f has a local minimum. the graph of f increasing?
d) On what intervals, if any,
i) On what x -intervals is the graph of f concave up? is the graph of f decreasing?
e) For what x -values does $f^{\prime}(x)=0$? j) On what x -intervals is the graph of f concave down?
\#2. Given the following info, add slope and concavity maps below and sketch the function curve:
intercepts at $(-4,0)(2,0)(0,-1)$
local max at $(1,2)$
local min at (-2,-3)
inflection point at $(0,-1)$
increasing: $(-2,1)$
decreasing: $(-\infty,-2) \cup(1, \infty)$
concave up: $(-\infty, 0)$
concave down: $(0, \infty)$

\#3. For function below find the following: all critical points, local maxima and minima, inflections points, and x-intervals where the function is increasing, decreasing, concave up, and concave down.

\#4. Given the following info, add slope and concavity maps below and sketch the function curve:
intercept: $(0,4)(2,0)(8,0)(-6,0)$
local max: $(-2,6)(6,5)$
local min: $(3,-4)$
inflection point: $(0,4)(1,2)(2,0)(4,0)$
increasing: $(-\infty,-2) \cup(3,6)$
decreasing: $(-2,3) \cup(6, \infty)$
concave up: $(0,1) \cup(2,4)$
concave down: $(-\infty, 0) \cup(1,2) \cup(4, \infty)$

Day 2...

\#4. (Without a calculator) using the precalc, first derivative, second derivative curve sketching procedure, sketch the graph of $f(x)=-x^{2}+6 x+7$.
\#5. (Without a calculator) using the precalc, first derivative, second derivative curve sketching procedure, sketch the graph of $f(x)=x^{3}-9 x^{2}+27 x-27$.
\#6. (Without a calculator) using the precalc, first derivative, second derivative curve sketching procedure, sketch the graph of $f(x)=-x^{3}+3 x-1$.
\#7. (Without a calculator) using the precalc, first derivative, second derivative curve sketching procedure, sketch the graph of $f(x)=x^{6}-3 x^{5}$.

Day 3...

\#8. At a toy store the revenue R, in dollars, derived from selling x electric trucks is

$$
R(x)=-0.005 x^{2}+20 x .
$$

(a) Determine where the graph of R is increasing and where it is decreasing.
(b) How many trucks need to be sold to maximize revenue?
(c) What is the maximum revenue?
(d) Sketch the function R (without using a calculator).
\#9. Find the local maxima and local minima of the function $f(x)=x^{3}-3 x+2$ without sketching the function (using only the first and second derivatives).
\#10. For a certain production facility the cost function is $C(x)=2 x+5$ and the revenue function is $R(x)=8 x-x^{2}$ where x is the number of units produced (in thousands) and R and C are measured in millions of dollars.
(a) Find the profit function $P(x)=R(x)-C(x)$.
(b) Where is the profit a maximum?
(c) What is the maximum profit?
(d) Where is the revenue a maximum?
(e) What is the maximum revenue?
\#11. Locate all horizontal and vertical asymptotes, if any, of the function $f(x)=\frac{x^{2}}{x^{2}-4}$.
\#12. (Without a calculator) using the precalc, first derivative, second derivative procedure curve sketching procedure (including finding any asymptotes), sketch the graph of $f(x)=\frac{8}{x^{2}-16}$.

