\qquad

1. Approximate the definite integral by using a partition in which each subinterval is of length 2. Choose u_{i} as the midpoint of each subinterval. Leave your answer in exact form.

$$
\int_{0}^{8}\left[x^{2}+2 x\right] d x
$$

Evaluate the indefinite integrals:
2. $\int\left(e^{4 t}-2 e^{2 t}\right) d t$
3. $\int\left(x^{5}+2 x^{3}-3 x^{2}-8\right) d x$
4. $\int \frac{4+3 \sqrt[3]{x}}{\sqrt[3]{x}} d x$
5. Integrate by parts.
$\int 6 x^{2} e^{2 x} d x$
6. Integrate by substitution.
$\int x \sqrt{x-3} d x$
7. Find $h(x)$ if $h^{\prime \prime}(x)=40 x^{3}-36 x^{2}, h^{\prime}(1)=-2$, and $h(0)=7$

Evaluate the definite integrals (leave answers in exact form):
8. $\int_{2}^{4}\left[x^{2}-\frac{2}{x}\right] d x$
9. $\int_{0}^{2} 4 x^{2}\left(x^{3}-1\right) d x$
10. Solve the differential equation below with the boundary condition that $y=14$ and $x=1$.

$$
\frac{d y}{d x}=10 x^{4}+12 x^{3}-3 x^{2}+2 x+4
$$

11. Sketch the graph of the functions, then find the area enclosed by the graphs of the given functions. Leave answer in exact form.

$$
f(x)=-x^{2}+2 x \text { and } g(x)=x^{2}
$$

