\qquad

1. Given that $\int_{2}^{6} f(x)=10 \quad \int_{6}^{8} f(x)=2 \quad \int_{2}^{6} g(x)=-2$, find:
(a) $\int_{2}^{6} f(x)+g(x)=$
(b) $\int_{6}^{2} f(x)=$
(c) $\int_{3}^{3} g(x)=$
(d) $\int_{2}^{6} 6 g(x)=$
(e) $\int_{2}^{8} f(x)=$

In $2-4$, set up the integral only.
2. The area under the curve $f(x)=25-x^{2}$ and above the x-axis.
3.

4.

5. Find the area of the region bounded by $f(x)=2 x+1$ and $g(x)=4-x^{2}$.
6. Find the area of the region bounded by $y=x^{2}, x=0, x=1$, and $y=0$.
7. Use integration by parts.
$\int \frac{\ln x}{x^{2}} d x$
9. Integrate by substitution.
$\int x \sqrt{3 x^{2}-1} d x$
8. Use integration by parts.

$$
\int x^{2} e^{-x} d x
$$

10. Evaluate the definite integral.

Integrate by substitution.
$\int_{1}^{2} \frac{x d x}{3 x^{2}-2}$

