## Group 1 problems:

In Problems 19-36 determine whether $\lim _{x \rightarrow c} f(x)$ exists by graphing the function. If it exists, find $\lim _{\rightarrow \rightarrow} f(x)$.

586/29. $f(x)=\left\{\begin{array}{cl}2 x+5 & \text { if } x \neq 2 \\ 9 & \text { if } x=2\end{array} \quad c=2\right.$
596/ 23. $\lim _{x \rightarrow 2} \frac{x^{2}-4}{x-2}$
611/ In Problems 1-14 determine whether the function $f$ is continuous at $c$.

$$
\text { 7. } f(x)=\left\{\begin{array}{cc}
3 x-1 & \text { if } \quad x<1 \\
4 & \text { if } \quad x=1 \quad c=1 \\
2 x & \text { if } \quad x>1
\end{array}\right.
$$

622/ In Problems 21-30 find the derivative off. Use formula (4).
21. $f(x)=2 x-4$
(limit definition of derivative)

640/ In Problems 73-82 find the value of the derivative at the indicated point.
73. $y=x^{4}, \quad$ at $(1,1)$

686/ In Problems 1-52 find the derivative of each function.
13. $f(x)=\sqrt{e^{x}}$

696/ In Problems $1-32$ find dyy/dx by using implicit differentiation.
11. $4 x^{3}+2 y^{3}=x^{2}$

740/ In Problems 27-46 follow the seven steps on page 731 to graph $f$.
27. $f(x)=x^{3}-6 x^{2}+1$

740/ In Problems 47-54 determine where $f^{\prime}(x)=0$. Use the Second Derivative Test to determine the local maxima and local minima of each function.
47. $f(x)=x^{3}-3 x+2$

740/61. Cost and Revenue Functions For a certain production facility the cost function is

$$
C(x)=2 x+5
$$

and the revenue function is

$$
R(x)=8 x-x^{2}
$$

where $x$ is the number of units produced (in thousands)
and $R$ and $C$ are measured in millions of dollars.
(a) Find the profit function $P(x)=R(x)-C(x)$.
(b) Where is the profit a maximum?
(c) What is the maximum profit?
(d) Where is the revenue a maximum?
(e) What is the maximum revenue?

800/
13. $\int\left(x^{2}+2 e^{x}\right) d x$

806/ In Problems 1-34 evaluate each indefinite integral. Use the substitution method.
13. $\int \frac{x}{\sqrt[5]{1-x^{2}}} d x$

813/ In Problems 9-18 find the particular solution of each differential equation, using the indicated boundary condition.
11. $\frac{d y}{d x}=x^{2}-x$

$$
y=3 \text { when } x=3
$$

813/ In Problems 9-18 find the particular solution of each differential equation, using the indicated boundary condition.
13. $\frac{d y}{d x}=x^{3}-x+2$

$$
y=1 \text { when } x=-2
$$

823/
7. $\int_{0}^{1}\left(t^{2}-t^{3 / 2}\right) d t$

823/
23. $\int_{0}^{1} e^{-x} d x$

823/
24. $\int_{0}^{1} x^{2} e^{x^{3}} d x$

836/ In Problems 11-28 find the area enclosed by the graphs of the given functions and lines. Draw a sketch first.
17. $f(x)=\sqrt{x}, \quad g(x)=x^{3}$

861/ In Problems 1-10 find the average value of each function fover the given interval.

1. $f(x)=x^{2}, \quad$ over $[0,1]$

869/ 13. Consumer Arrival At a supermarket, customers arrive at a checkout counter at the rate of 60 per hour. What is the probability that 8 or fewer will arrive in a period of 10 minutes?

878/ In Problems 17-24 compute the expected value for each probability density function.
19. $f(x)=2 x, \quad$ over $[0,1]$

878/ 25. A number $x$ is selected at random from the interval [ 0,5 ]. The probability density function for $x$ is

$$
f(x)=\frac{1}{5} \quad \text { for } 0 \leq x \leq 5
$$

Find the probability that a number is selected in the subinterval [1, 3].

898/ In Problems $I-6$ find $f_{x}, f_{y}, f_{x}(2,-1)$, and $f_{y}(-2,3)$.
3. $f(x, y)=(x-y)^{2}$

905/ In Problems 7-24 find all critical points and determine whether they are a local maximum, a local minimum, or a saddle point.
7. $f(x, y)=3 x^{2}-2 x y+y^{2}$

912/ In Problems 1-12 use the method of Lagrange multipliers.

1. Find the maximum value of $z=f(x, y)=3 x+4 y$ subject to the constraint $g(x, y)=x^{2}+y^{2}-9=0$.

Extra review 1. Evaluate: $\int_{1}^{2} \frac{\ln ^{3} x}{x} d x$

Extra review 2. Find $\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}$ when $x=-2$

Extra review 3. Find $\lim _{h \rightarrow 0} \frac{\cos (x+h)-\cos x}{h}$ when $x=\frac{\pi}{2}$

Extra review 4. If $3 x^{2}+4 y^{2}=2 x$, then use implicit differentiation to find $\frac{d y}{d x}$.

Extra review 5. If $x^{4}+3 x y^{3}-16=y^{3}$, then use implicit differentiation to find $\frac{d y}{d x}$.

Extra review 6. Solve the differential equation $\frac{d y}{d x}=4 x^{3}-6 x^{2}+x-4$ when $y=3$ and $x=1$

Extra review 7. Evaluate: $\int \frac{1}{6 x} d x$

Extra review 8. A small company manufactures and sells bicycles. The production manager has determined that the cost function is $C(x)=75+10 x$ and the revenue function is $R(x)=70 x-2 x^{2}$. Find the maximum profit.

Extra review 9. A firm determines that its total profit in dollars from the production and sale of $x$ units of a product is given by $P(x)=\frac{1500}{x^{2}-6 x+10}$. Find the number of units x for which the total profit is a maximum.

Extra review 10. Find $\frac{d^{2} y}{d x^{2}}$ if $y=\frac{x+1}{x-1}$

Extra review 11. Find the area bounded by

$$
y=-\ln x+2, \quad x=1, \text { and } \quad x=2 .
$$

Extra review 12. Find $\frac{d}{d x}\left(3 x-2 x^{2}\right)^{3}$

Extra review 13. If $y=\cos \left(x^{2}\right)$, then $y^{\prime}=$

Extra review 14. Evaluate: $\int_{1}^{4} \frac{1}{4 y} d y$

Extra review 15. Sketch the graph of some function such that:

$$
\begin{aligned}
& f^{\prime}(x)>0 \text { when } x<-2 \text { or } x>2 \\
& f^{\prime}(x)<0 \text { when }-2<x<2 \\
& f^{\prime \prime}(x)>0 \text { when }-\sqrt{2}<x<0 \text { or } x>\sqrt{2} \\
& f^{\prime \prime}(x)<0 \text { when } x<-\sqrt{2} \text { or } 0<x<\sqrt{2}
\end{aligned}
$$

## Group 2 problems:

596/ 25. $\lim _{x \rightarrow-4} \frac{x^{3}+64}{x+4}$
621/ In Problems 1-10 find the slope of the tangent line to the graph off at the given point. Then find an equation of this tangent line. For Problems 1-4 also graph $f$ and
the tangent line. the tangent line.

1. $f(x)=2 x^{2}$ at $(-1,2)$

628/ In Problems 27-32 determine whether the function $f$ is continuous at $c$.
27. $f(x)=\left\{\begin{array}{ccc}\frac{x^{2}-16}{x-4} & \text { if } & x \neq 4 \\ 8 & \text { if } & x=4\end{array} \quad c=4\right.$

640/ In Problems 73-82 find the value of the derivative at the indicated point.
75. $y=\sqrt{x}, \quad$ at $(4,2)$

663/ In Problems 15-30 find the derivative of each function.
15. $f(x)=\frac{x}{x+1}$

696/ In Problems 1-32 find dy/dx by using implicit differentiation.
13. $\frac{1}{x^{2}}-\frac{1}{y^{2}}=4$

704/ In Problems $1-16$ find $f^{\prime}$ and $f^{\prime \prime}$.
3. $f(x)=3 x^{2}+x-2$

710/ In Problems 47-50 find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$. Find all numbers $x$ for which $f^{\prime}(x)=0$, and calculate $f^{\prime \prime}(x)$ at these numbers.
49. $f(x)=\left(x^{2}-1\right)^{3 / 2}$

740/ In Problems 27-46 follow the seven steps on page 731 to graph $f$.
29. $f(x)=x^{4}-2 x^{2}+1$

740/ In Problems 47-54 determine where $f^{\prime}(x)=0$. Use the Second Derivative Test to determine the local maxima and local minima of each function.
49. $f(x)=3 x^{4}+4 x^{3}-3$

800/
15. $\int\left(x^{3}-2 x^{2}+x-1\right) d x$

806/ In Problems 1-34 evaluate each indefinite integral. Use the substitution method.
11. $\int\left(x^{3}-1\right)^{4} x^{2} d x$

823/
9. $\int_{-2}^{3}(x-1)(x+3) d x$

823/
25. $\int_{1}^{3} \frac{d x}{x+1}$

836/ In Problems 11-28 find the area enclosed by the graphs of the given functions and lines. Draw a sketch first.
19. $f(x)=x^{2}, \quad g(x)=x^{4}$

849/ In Problems 1-14 evaluate each indefinite integral. Use integration by parts.

1. $\int x e^{2 x} d x$

861/ In Problems 1-10 find the average value of each function $f$ over the given interval.
3. $f(x)=1-x^{2}, \quad$ over $[-1,1]$

869/ 15. Defective Parts A machine produces parts to meet certain specifications, and the probability that a part is defective is .05 . A sample of 50 parts is taken. What is the probability that it will have 2 or more defective parts? Compute this probability, using both the Poisson and the binomial probability functions.

878/ In Problems 17-24 compute the expected value for each probability density function.
21. $f(x)=\frac{3}{250}\left(10 x-x^{2}\right)$, over $[0,5]$
29. Psychological Testing Let $T$ be the random variable that a subject in a psychological testing program will make a certain choice after $t$ seconds. If the probability density function is

$$
f(t)=0.4 e^{-0.4 t}
$$

what is the probability that the subject will make the choice in less than 5 seconds?
899/ In Problems 7-16 find $f_{x}, f_{y}, f_{x x}, f_{y y}, f_{y x}$, and $f_{x y}$.
7. $f(x, y)=y^{3}-2 x y+y^{2}-12 x^{2}$

905/ In Problems 7-24 find all critical points and determine whether they are a local maximum, a local minimum, or a saddle point.
11. $f(x, y)=x^{2}-y^{2}+4 x+8 y$

912/ In Problems $1-12$ use the method of Lagrange multipliers.
3. Find the minimum value of $z=f(x, y)=x^{2}+y^{2}$ subject to the constraint $g(x, y)=x+y-1=0$.

## Group 3 problems:

604/ 1. $\lim _{x \rightarrow \infty} \frac{x^{3}+x^{2}+2 x-1}{x^{3}+x+1}$
604/ 6. $\lim _{x \rightarrow-\infty} \frac{x^{2}-2 x+1}{x^{3}+5 x+4}$

640/ In Problems 73-82 find the value of the derivative at the indicated point.

$$
\text { 77. } y=1 / \sqrt[3]{x}, \quad \text { at }\left(-8,-\frac{1}{2}\right)
$$

663/ In Problems $15-30$ find the derivative of each function.
17. $f(x)=\frac{3 x+4}{2 x-1}$

686/ In Problems 1-52 find the derivative of each function.
19. $f(x)=e^{-3 x}-3 x$

696/ In Problems 1-32 find dy/dx by using implicit differentiation.
15. $\frac{1}{x}+\frac{1}{y}=2$

Figure 4
714/


Critical point is a local maximum

Figure 5


Critical point is a local minimum



Critical point is neither local maximum nor a local minimum

$f^{\prime}(c)$ does not exist
Critical point is neither a local maximum nor a local minimum

740/ In Problems 27-46 follow the seven steps on page 731 to graph $f$.
31. $f(x)=x^{5}-10 x^{4}$

741/ 63. Demand Equation The cost function and demand equation for a certain product are

$$
\begin{aligned}
C(x) & =50 x+40,000 \\
p & =d(x)=100-0.01 x
\end{aligned}
$$

Find
(a) The revenue function
(b) The maximum revenue
(c) The profit function
(d) The maximum profit

750/ In Problems 1-4 locate all horizontal asymptotes, if any, of the function $f$.

1. $f(x)=\frac{x^{3}+x^{2}+2 x-1}{x^{3}+x+1}$

750/ In Problems 5-8 locate all vertical asymptotes, if any, of the function $f$.
6. $f(x)=\frac{3 x^{2}-1}{x+1}$

800/ In Problems 31-34 find the revenue function. Assume that revenue is zero when zero units are sold.
33. $R^{\prime}(x)=20 x+5$

823/
11. $\int_{1}^{2} \frac{x^{2}-1}{x^{4}} d x$

823/ 29. $\int_{0}^{3} \frac{\ln (x+1)}{x+1} d x$
836/ In Problems 11-28 find the area enclosed by the graphs of the given functions and lines. Draw a sketch first.
21. $f(x)=x^{2}-4 x, \quad g(x)=-x^{2}$

861/ In Problems 1-10 find the average value of each function $f$ over the given interval.
5. $f(x)=3 x, \quad$ over $[1,5]$

869/ In Problems 9-12 find each probability. Assume X is a Poisson random variable with $n p=6$.

$$
\text { 9. } P(X \leq 5)
$$

878/ In Problems 17-24 compute the expected value for each probability density function.

$$
\text { 17. } f(x)=\frac{1}{2}, \quad \text { over }[0,2]
$$

879/ 31. Learning Time A manufacturer of educational games for children finds through extensive psychological research that the average time it takes for a child in a certain age group to learn the rules of the game is predicted by a beta probability density function,

$$
f(x)=\left\{\begin{array}{ccl}
\frac{1}{4500}\left(30 x-x^{2}\right) & \text { if } & 0 \leq x \leq 30 \\
0 & \text { if } & x<0 \text { or } x>30
\end{array}\right.
$$

where $x$ is the time in minutes. What is the probability a child will learn how to play the game within 10 minutes? What is the probability a child will learn the game after 20 minutes? What is the probability the game is learned in at least 10 minutes, but no more than 20 minutes?

899/ In Problems 31-38 find the slope of the tangent line to the curve of intersection of the surface $z=f(x, y)$ with the given plane at the indicated point.
31. $z=f(x, y)=5 x^{2}+3 y^{2}$; plane: $y=3$;
point: $(2,3,47)$
905/ In Problems 7-24 find all critical points and determine whether they are a local maximum, a local minimum, or a saddle point.

$$
\text { 15. } f(x, y)=x^{2}+y^{2}+x y-6 x+6
$$

## 912/ In Problems $1-12$ use the method of Lagrange multipliers.

## 5. Find the maximum value of

$z=f(x, y)=12 x y-3 y^{2}-x^{2}$
subiect to the constraint $g(x, y)=x+y-16=0$.

## Group 4 problems:

596/
33. $\lim _{x \rightarrow 0} \frac{4 x^{3}-3 x}{x^{2}-x}$

622/ In Problems 1-10 find the slope of the tangent line to the graph of fat the given point. Then find an equation of this tangent line. For Problems 1-4 also graph f and the tangent line.
5. $f(x)=x^{2}+x$ at $(2,6)$

622/ In Problems 21-30 find the derivative of f. Use formula (4).
25. $f(x)=3 x^{2}-2 x+1$

628/ In Problems 27-32 determine whether the function $f$ is continuous at $c$.
29. $f(x)=\left\{\begin{array}{ccc}\frac{x^{3}-8}{x-2} & \text { if } & x \neq 2 \\ 4 & \text { if } & x=2\end{array} \quad c=2\right.$

663/ In Problems 15-30 find the derivative of each function.
19. $f(x)=\frac{x^{2}}{x-4}$

686/ In Problems 1-52 find the derivative of each function.
21. $f(x)=\frac{e^{3 x}-e^{-x}}{e^{x}}$

696/ In Problems 1-32 find dy/dx by using implicit differentiation.
17. $\frac{x}{y}+\frac{y}{x}=6$

710/ In Problems 5-40 find the derivative of each function.
35. $f(x)=e^{2 x^{2}+5}$

710/ In Problems 47-50 find $f^{\prime}(x)$ and $f^{\prime \prime}(x)$. Find all numbers $x$ for which $f^{\prime}(x)=0$, and calculate $f^{\prime \prime}(x)$ at these numbers.
50. $f(x)=\left(x^{2}+1\right)^{3 / 2}$

740/55. Sketch the graph of a function $y=f(x)$ that is continuous for all $x$ and has the following properties:

1. $(0,10),(6,15)$, and $(10,0)$ are on the graph.
2. $f^{\prime}(6)=0$ and $f^{\prime}(10)=0 ; f^{\prime}(x)$ is not 0 anywhere else.
3. $f^{\prime \prime}(x)<0$ for $x<9, f^{\prime \prime}(9)=0$, and $f^{\prime \prime}(x)>0$ for $x>9$.
750/ In Problems 15-24 graph each function.
4. $f(x)=\frac{2 x}{x^{2}-4}$

741/ 65. Demand Equation The demand equation for a certain commodity is

$$
p=d(x)=10+\frac{40}{x} \quad 1 \leq x \leq 10
$$

where $p$ is the price in dollars when $x$ units are demanded. Find
(a) The revenue function
(b) The number $x$ of units demanded that maximizes revenue
(c) The maximum revenue

800/
17. $\int\left(\frac{x-1}{x}\right) d x$

806/ In Problems 1-34 evaluate each indefinite integral. Use the substitution method.
13. $\int \frac{x}{\sqrt[5]{1-x^{2}}} d x$

823/
13. $\int_{1}^{4}\left(\sqrt[5]{t^{2}}+\frac{1}{t}\right) d t$

836/ In Problems 11-28 find the area enclosed by the graphs of the given functions and lines. Draw a sketch first.
23. $f(x)=4-x^{2}, \quad g(x)=x+2$

861(2)/ In Problems 1-10 find the average value of each function $f$ over the given interval.
7. $f(x)=-5 x^{4}+4 x-10, \quad$ over $[-2,2]$

869/
In Problems 9-12 find each probability. Assume $X$ is a Poisson random variable with $n p=6$.
11. $P(X=5)$

878/ In Problems 17-24 compute the expected value for each probability density function.
23. $f(x)=\frac{1}{x}, \quad$ over $[1, e]$

882/ 9. Suppose the outcome $X$ of an experiment lies between 0 and 2 , and the probability density function for $X$ is $f(x)=\frac{1}{2} x$. Find
(a) $P(X \leq 1)$
(b) $P(1 \leq X \leq 1.5)$
(c) $P(1.5 \leq X)$

899/ In Problems 31-38 find the slope of the tangent line to the curve of intersection of the surface $z=f(x, y)$ with the given plane at the indicated point.
33. $z=f(x, y)=\sqrt{16-x^{2}-y^{2}}$; plane: $x=1$; point: $(1,2, \sqrt{11})$

905/ In Problems 7-24 find all critical points and determine whether they are a local maximum, a local minimum, or a saddle point.
19. $f(x, y)=x^{3}-6 x y+y^{3}$

912/ In Problems 1-12 use the method of Lagrange multipliers.
7. Find the minimum value of $z=f(x, y)=5 x^{2}+6 y^{2}-x y$ subject to the constraint $g(x, y)=x+2 y-24=0$.

## Group 5 problems:

In Problems 19-36 determine whether $\lim _{x \rightarrow c} f(x)$ exists by graphing the function. If it exists, find $\lim _{x \rightarrow c} f(x)$.
586/33. $f(x)=\left\{\begin{array}{ccc}3 x-1 & \text { if } & x<1 \\ \text { Not defined } & \text { if } & x=1 \quad c=1 \\ 2 x & \text { if } & x>1\end{array} \quad\right.$
604/
3. $\lim _{x \rightarrow \infty} \frac{2 x+4}{x-1}$

604/
7. $\lim _{x \rightarrow-\infty} \frac{5 x^{3}-1}{x^{2}+1}$

606/Figure 20. Which functions are continuous?


611/ In Problems 1-14 determine whether the function $f$ is continuous at $c$.
11. $f(x)=\left\{\begin{array}{lll}x^{2} & \text { if } & x \leq 0 \\ 2 x & \text { if } & x>0\end{array} \quad c=0\right.$

663/ In Problems $15-30$ find the derivative of each function.
21. $f(x)=\frac{2 x+1}{3 x^{2}+4}$

696/ In Problems 1-32 find dy/dx by using implicit differentiation.
19. $\dot{x}^{2}=\frac{y^{2}}{y^{2}-1}$

704/ In Problems $1-16$ find $f^{\prime}$ and $f^{\prime \prime}$.
5. $f(x)=-3 x^{4}+2 x^{2}$

740/ 57. Sketch the graph of a function $y=f(x)$ that is continuous
for all $x$ and has the following properties:

1. $(1,5),(2,3)$, and $(3,1)$ are on the graph.
2. $f^{\prime}(1)=0$ and $f^{\prime}(3)=0 ; f^{\prime}(x)$ is not 0 anywhere else.
3. $f^{\prime \prime}(x)<0$ for $x<2, f^{\prime \prime}(2)=0$, and $f^{\prime \prime}(x)>0$ for $x>2$.

800/ In Problems 35-38 find the cost function and determine where the cost is a minimum.
35. $C^{\prime}(x)=14 x-2800$

Fixed cost $=\$ 4300$
806/ In Problems 1-34 evaluate each indefinite integral. Use the substitution method.
14. $\int x \sqrt{x+3} d x$

813/ In Problems 9-18 find the particular solution of each differential equation, using the indicated boundary condition.
15. $\frac{d y}{d x}=e^{x}$

$$
y=4 \text { when } x=0
$$

823/ 15. $\int_{1}^{4} \frac{x+1}{\sqrt{x}} d x$
836/ In Problems 11-28 find the area enclosed by the graphs of the given functions and lines. Draw a sketch first.
25. $f(x)=x^{3}, \quad g(x)=4 x$

849/
In Problems 15-30 evaluate each definite integral by using the method of integration by parts.
22. $\int_{1}^{2} x \ln x d x$

861(2)/ In Problems 1-10 find the average value of each function $f$ over the given interval.
9. $f(x)=e^{x}, \quad$ over $[0,1]$

## 867/Example 4

A department store has found that the daily demand for color television sets averages 3 in 100 customers. On a given day, 50 appliances are sold. What is the probability that more than 3 of the 50 sales are requests for television sets?

## 873/Example 1

Show that the function $f(x)=\frac{3}{56}\left(5 x-x^{2}\right)$ is a probability density function over the interval [0, 4].

878(9) 33. Cost Estimate The probability density function that gives the probability that an electrical contractor's cost estimate is off by $x$ percent is

$$
f(x)=\frac{3}{56}\left(5 x-x^{2}\right)
$$

for $x$ in the interval $[0,4]$. On average, by what percent can the contractor be expected to be off?

890(1)/ In Problems 35-48 find the domain of each function.
47. $w=f(x, y, z)=\frac{4}{x^{2}+y^{2}+z^{2}}$

905/ In Problems 7-24 find all critical points and determine whether they are a local maximum, a local minimum, or a saddle point.
21. $f(x, y)=x^{3}+x^{2} y+y^{2}$

921/ 9. Use the method of Lagrange multipliers to find the maximum value of each of the following functions $z=f(x, y)$, subject to the constraint $g(x, y)=0$ :
(a) $f(x, y)=5 x^{2}-3 y^{2}+x y$

$$
g(x, y)=2 x-y-20=0
$$

## Group 6 problems:

596/ 35. $\lim _{x \rightarrow 1} \frac{x^{4}-1}{x-1}$
611/ In Problems 1-14 determine whether the function $f$ is continuous at $c$.

$$
\text { 13. } f(x)=\left\{\begin{array}{cl}
4-3 x^{2} & \text { if } \quad x<0 \\
4 & \text { if } \quad x=0 \\
\sqrt{16-x^{2}} & \text { if } \quad 0<x<4
\end{array} \quad c=0\right.
$$

622/ In Problems 1-10 find the slope of the tangent line to the graph of $f$ at the given point. Then find an equation of this tangent line. For Problems 1-4 also graph $f$ and the tangent line.

$$
\text { 7. } f(x)=-x^{2}+4 x \text { at }(1,3)
$$

628/ In Problems 27-32 determine whether the function $f$ is continuous at $c$.
31. $f(x)=\left\{\begin{array}{ccc}2 x^{2}+1 & \text { if } \quad x<0 \\ 1 & \text { if } \quad x=0 \\ x^{2}+1 & \text { if } \quad x>0\end{array} \quad c=0\right.$

641/ In Problems 73-82 find the value of the derivative at the indicated point.
81. $y=2-2 / x^{3}$, at $\left(2, \frac{7}{4}\right)$

664/ In Problems 15-30 find the derivative of each function.
25. $f(x)=1+\frac{1}{x}+\frac{1}{x^{2}}$

686/ In Problems 1-52 find the derivative of each function.
25. $f(x)=\frac{e^{x}}{x}$

696/ In Problems 1-32 find dy/dx by using implicit differentiation.
21. $(2 x+3 y)^{2}=x^{2}+y^{2}$

740/ In Problems 47-54 determine where $f^{\prime}(x)=0$. Use the Second Derivative Test to determine the local maxima and local minima of each function.
51. $f(x)=x^{5}-5 x^{4}+2$

741/ 72. Profit Function A company estimates that the profit $P(x)$ is related to the selling price $x$ of an item by

$$
P(x)=15 x^{2}-100-\frac{1}{3} x^{3}
$$

(a) Determine where profit is increasing.
(b) What selling price results in maximum profit?

750/ In Problems 9-14 locate all horizontal and vertical asymptotes, if any, of the function $f$.
13. $f(x)=\frac{x^{2}}{x^{2}-4}$

800/
19. $\int\left(2 e^{x}-\frac{3}{x}\right) d x$

800/ In Problems 35-38 find the cost function and determine where the cost is a miniтит.
37. $C^{\prime}(x)=20 x-8000$

Fixed cost $=\$ 500$
813/ In Problems 9-18 find the particular solution of each differential equation, using the indicated boundary condition.
17. $\frac{d y}{d x}=\frac{x^{2}+x+1}{x}$
$y=0$ when $x=1$
882 1. Find the average value of $f(x)=x^{3}$ over the interval $[0,1]$.

## 867/Example 5

Weather records show that, of the 30 days in November, on the average 3 days are snowy. What is the probability that November of next year will have at most 4 snowy days? Use a Poisson model.

## 874/Example 2

Compute the probability that the random variable $X$ with probability density function $\frac{3}{56}\left(5 x-x^{2}\right)$ assumes values between 1 and 2 .

## 879(7)/Example 6

A passenger arrives at a train terminal where trains arrive every 40 minutes. Determine the expected waiting time by using a uniform density function.

In Problems $7-16$ find $f_{x}, f_{y}, f_{x x}, f_{y y}, f_{y x}$, and $f_{x y}$.
15. $f(x, y)=\frac{10-x+2 y}{x y}$

921/ 7. For each of the following surfaces, find all local maxima, local minima, and saddle points:
(a) $z=f(x, y)=x y-6 x-x^{2}-y^{2}$

921/ 9. Use the method of Lagrange multipliers to find the maximum value of each of the following functions $z=f(x, y)$, subject to the constraint $g(x, y)=0$ :
(b) $f(x, y)=x \sqrt{y}$

$$
g(x, y)=2 x+y-3000=0
$$

