\qquad

Find the derivative of each function.

1. $f(t)=\frac{t^{4}}{4}$
2. $f(x)=\frac{2}{3} x^{6}+\frac{2}{5} x^{5}$
3. $r(t)=\frac{3-t}{5}$
4. $y=x^{\sqrt{5}}$
5. $f(x)=a x^{2}+b x+c$
6. $f(x)=3 x^{3}-\frac{1}{3 x^{2}}$
7. $f(x)=\frac{1}{\sqrt[4]{x^{3}}}$
8. $f(x)=\frac{1}{\sqrt[3]{x^{2}}}-3 x^{-2}+x^{2}+1$
9. $\frac{d V}{d r}$ if $V=\frac{4}{3} \pi r^{3}$

Find the value of the derivative at the indicated point.
10. $y=\frac{1}{2} x^{2} \quad$ at $\left(1, \frac{1}{2}\right)$

Find the slope of the tangent line to the graph of the function f at the indicated point.
What is the equation of the tangent line at the indicated point?
11. $y=x^{3}+3 x-1$ at $(0,-1)$

Find those x, if any, at which $f^{\prime}(x)=0$.
12. $f(x)=x^{3}-3 x+2$

Find any points at which the graph of f has a horizontal tangent line.
13. $f(x)=x^{5}-10 x^{4}$
14. Supply and Demand Suppose $S(x)=50 x^{2}-50 x$ is the supply function describing the number of crates of grapefruit a farmer is willing to supply to the market for x dollars per crate.
a. How many crates is the farmer willing to supply for $\$ 10$ per crate?
b. How many crates is the farmer willing to supply for $\$ 13$ per crate?
c. Find the average rate of change in supply from $\$ 10$ per crate to $\$ 13$ per crate?
d. Find the instantaneous rate of change in supply at $x=10$.

Find the derivative of each function by using the formula for the derivative of a product.
15. $f(x)=\left(x^{5}+1\right)\left(3 x^{3}+8\right)$
16. $f(x)=\left(x^{3}-1\right)\left(3 x^{2}-2 x+1\right)$

Find the slope of the tangent line to the graph of the function f at the indicated point. What is the equation of the tangent line at the indicated point?
17. $f(x)=\left(x^{3}-2 x+2\right)(x+1)$ at $(1,2)$
18. Find y^{\prime} if $y=\frac{2 x^{2}-1}{5 x+2}$
19. Find $f^{\prime}(x)$ if $f(x)=\frac{-2}{x^{2}}$
20. Find y^{\prime} if $y=\frac{(2 x+3)(x-4)}{3 x+5}$
21. Find $\frac{d y}{d x}$ if $y=\frac{(3 x+4)(2 x-3)}{(2 x+1)(3 x-2)}$
22. Value of a Car The value v of a luxury car after t years is $\quad v(t)=\frac{10,000}{t}+6000$ for $1 \leq t \leq 6$.
a. Graph $v(t)$.
b. What is the average rate of change in value from $t=2$ to $t=5$?
c. What is the instantaneous rate of change in value?
d. What is the instantaneous rate of change after 2 years?
e. What is the instantaneous rate of change after 5 years?
f. Interpret the answers found in parts c and d of this question.

