Honors Finite Mathematics – Lesson Notes: Chapter 3

₩ 🗱 – Linear Inequalities

Linear Programming:

Used when minimizing and maximizing a linear expression within a set of linear inequality restrictions.

We will study linear programing in two variables in this chapter.

Ex. Determine whether $P_{1}=(7,5)$, and $P_{2}=(9,12)$, and $P_{3}(3,1)$ are solutions to the following system without graphing.

Review: Graph
$$2x + 3y \le 6$$

 $test(0,0)$ $0 \le 6$ three half plane

I inequality: Solution set is all points in the half plane

System of inequalities: solution set is all points common to all half planes (overlapped region).

no solution

Definition: Unbounded regions - extend infinitely for in some direction (cannot be enclosed by a circle).

Definition: Bounded regions - can be enclosed by some circle.

Ex. Graph the system of linear inequalities.

$$\frac{3y+y=12}{-9x-3y=-36}$$

$$\frac{-9x-3y=-36}{-7x=-24}$$

$$2(\frac{24}{7})+3y=12$$

$$x=\frac{34}{7}$$

$$4y+21y=8y$$

$$21y=36$$

$$y=\frac{36}{7}$$

Ex. Nutrition. To maintain an adequate daily diet, nutritionists recommend the following: at least 85g of carbohydrate, 70g of fat, and 50g of protein. An ounce of food A contains 5 g of carbohydrate, 3 g of fat, and 2g of protein, while an ounce of food B contains 4g of carbohydrate, 3g of fat, and 3g of protein.

a) Write a system of linear inequalities that describes the possible quantities of each food.

b) Graph the system and list the corner points.

∗. 	A B		
С	5A+4B	≥	85
F	3A+3B	≥	70
P	2A+3B	≥	50

$$7(2A+3B=50)$$

$$2(5A+16=8)$$

$$-10A-15B=-250$$

$$10A+8B=120$$

$$-7B=-80$$

$$B=\frac{80}{4}$$

$$2A + 3\frac{10}{7} = 50$$

$$14A + 240 = 350$$

$$14A = 110$$

$$4 = \frac{110}{17} = \frac{55}{7}$$

Mike's Famous Toy Trucks manufactures two kinds of toy trucks - a standard model (x) and a deluxe model (y). In the manufacturing process, each standard model requires 2 hours of grinding and 2 hours of finishing, and each deluxe model needs 2 hours of grinding and 4 hours of finishing. The company has two grinders and three finishers, each of whom works at most 40 hours per week.

Create a system of inequalities representing this scenario, graph, and find corner points.

Each standard toy truck brings a profit of \$3 and each deluxe toy truck brings a profit of \$4. Assuming that every truck made will be sold, how many of each should be made to maximize profit?

P=3X+44

20 of each for maximum

profit = 3(20)+4(20)

60+80

\$140

the objective: maximize profit

p=3x+4y objective function

A linear programming problem generally has 2 components:

An objective function to be maximized or minimized.

A collection of inequalities representing conditions or constraints.

Terms:

• Objective function: the linear expression to by optimized.

• Feasible point: any point which obeys all constraints (lies in the solution region of the system of inequalities).

• Solution: a feasible point which maximized (or minimizes) the objective function.

Fundamental Theorem of Linear Programming:

If a linear programming problem has a solution, it is located at a corner point of the set of feasible points. If there are multiple solutions, at least one of them is located at a corner point of the set of feasible points. In either case, the corresponding value of the objective function is unique.

Solving a Linear Programming Problem:

- 1) Write an expression for the objective function.
- 2) Determine all constraints and graph the set of feasible points.
- 3) List the corner points of the set of feasible points.
- 4) Determine the value of the objective function at each corner point.
- 5) Select the optimal solution.

Objective	function	z = x	+5v
Cojective	Italiettoli.	2 "	,

$$\begin{cases} x + 4y \le 12 \\ x \le 8 \end{cases}$$

$$x + y \ge 2$$

$$x \ge 0$$

$$y \ge 0$$

Ex. Maximize, if possible, the quantity z = 5x + 7y subject to the following constriants.

$$2 \le x + y$$

$$x + y \le 8$$

$$2x + y \le 1$$

$$x \ge 0$$

$$y \ge 0$$

Corner	7	
(0,2)	14	410
(0,8)	56 Jem	er k
(2,6)	52	
(5,0)	25	
1(20)	10 min	
	,	

2

corner

*3 – Applications of Linear Programming

Investment Strategy. An investment broker wants to invest up to \$20,000. She can purchase a type A bond yielding a 10% return on the amount invested and she can purchase a type B bond yielding a 15% return on the amount invested. She also wants to invest at least as much in the type A bond as the type B bond. She will also invest at least \$5000 in the type A bond and no more than \$8000 in the type B bond. How much should she invest in each type of bond to maximize

A-12000

her return?	
D (A+B = 20000	2002
(2) A≥B	12200 - 12000 3000)
A 2 5000	10000 - (12000, 8000)
B = 8000	8000
630	5000 - (5000,5000)
	1990
return = 0.1A+0.15B	(20000,0)
I MAN V IN TO A	5000 10000 15000 70000

Corner	cetur
(5000,0)	500
(5000,5000)	1250
(8000, 8000)	2000
(12000,8000)	2400
(2000)	2000

Transportation: An appliance company has a warehouse and two terminals. To minimize shipping costs, the manager must decide how many appliances should be shipped to each terminal. There is a total supply of 1200 units in the warehouse and a demand for 400 units in terminal A and 500 units in terminal B. It costs \$12 to ship each unit to terminal A and \$16 to ship to terminal B. How many units should be shipped to each terminal in order to minimize costs?

