Hrs Brief Calculus — Lesson Notes: Unit 10 (Ch3,4) - Limits; Derivative of a Function

4.1 day 1 - Tangent to a curve, The Derivative
What is the slope (rate of change) of these functions?
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« Siope (rate of change) of @ curve at a point is the slope of the line
tangent o the curve at that point.
« Compute the slope: limit of difference guotient as h approaches 0.
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f(2)is slope of fatx=2
For any value c (x-value in the domain).
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“f prime of x at ¢" means all of the following:

« The 'derivative’ of the function f(x) at x=c.
+h » The rate of change of f as x changes, al x=c.
» The slope of the line tangent to f(x} at the point {¢, {(c)}.
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Find the slope of the tangent line to the graph of /at the given pornt.
Then find the equation of this tangent line. Graph fand the tangent line.

f( x) =y +4 at (L 5) Procedure:

« Graph the curve, locate the point, roughly sketch

- the tangent line. Fle+h
£ {IB ,ﬁ "H,!*'M WH? ) o Compute ./’ (6)“llm—(mm"*~*lmf"~“(~*"‘)~ with ¢ equal
o S to the point's x coordinate.
» The result is the slope of the tangent line, /2,
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Find the defivative of f at the given number.

2 Procedure:
= rrocecure. - . [{e+h)- f(c
f (x) 3x* at 2 « Compute f‘(c'):glg&twm%—f—(c) with ¢ equal to
the given number.
« The result is the derivative of f at the value.
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ind the derivative of f at the given number.
Procedure: .
LA A T v } — b
« Compute f'{¢)= E‘igg&ti—z—iig with ¢ equal to
the given number.
» The result is the derivative of f at the value,
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Find the derivative of f at the given number.
Procedure: .
LEEA A iva LKA ] 'i' - .
« Compute f/'(¢)= Ll!g—{r(xr—;)——{&—) with ¢ equal to
the given number.
« The result is the derivative of f al the value.
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Since we can use f(x) to compute the value of the derivative, f'(c) at ,;1 (X}”
any point x=c, that means the derivative is also a funciion of x. . o v B
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Find f'(x) , the derivative function:

#26. F(x)=2x* +x+1
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Differentiability and Continuit
Not all functions have a derivative for every value of x,
Three functions that do not have derivatives when x =0
are sl\ctuhed helow.
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A function is said 1o be ditferentiable at x=¢,
if it has a derivative when x = c.
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Continuity does not imply differentiability

If the derivative of a function exists at x=c¢,
then f(x) is continuous at x=c¢.

These functions do not have tangent lines at x = ¢, and,
hence, the derivative does not existat x=c¢ .
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List the points at which the following function is

A not differentiable.
» right-hand tangent line
(Hmiting position from
right}
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{efi-hand tangeni line t
(limiting position from lefl) corner point

A J

‘}’
% i
Example 1: Given below is the graph of y = f(x). Determine the points where f
is non-differentiable. —t
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"4.6 — The Derivative as an Instantaneous Velocity :
You get into your car at noon and drive non-stop until 3:00pm. §2, - S?
If you've driven a total of 150 miles, what was your average {T“"'“ _g“’
velocity (average speed)? ‘ A
A 150 Wi
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A bowling ball is dropped from the roof of a 5 story
building (wind resistance is negligible)

1) Use regression analysis to find a

quadratic equation model for distance s,
as a function of time t:

e —t=1,5 sec, 5=36 ft

e wem £=1.75 52C, 5=49 ft

2) Estimate the velocity (speed) of the ball at
t=1.0 by finding the average velocity using the
following time values:

a) average velocity from t=0.7 sec to t=1.0 sec
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b) average velocity from t=1.0 sec to t=1.2 sec
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Are these good estimates of the velocity of the ball at 1.0 second? / <
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How could we compute a more accurate value for the velocity at 1.0 second?



—t=0sec, s=0ft
— t=0.3sec, s=1.44 ft
—t=0.7 sec, s=7.84 ft

. —t=1.0sec, s=16 ft

. —t=1.2 sec, s=23.04 ft

Hint: Remember, velocity is the rate of change of the
distance vs. time function.

5= f(t)=16t

3) Find the derivative of the distance as a function of time, and
evaluate that function at t=1.0.
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‘ —t=1.5sec, s=36ft

‘—— t= 1.75 sec, s=49 ft
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Average Velocity: Instantaneous Velocity (7=
The ratio of the change in The rate of change of distance X

position A s to the with time which is the slope of
change in time Af the distance curve at a point | ——
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If s = f(¢) then velocity is the

change in position
derivative of the distance

elapsed time o3 it
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. Average Velocity Suppose the function s = f(t)=16t

relate:s the distance s (in feet) an object travels m tume 7 (i)
seconds). Compute the average velocity, As/Af, from =3

to:
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6. Velocity The position s (in meters) ot a particle m tune M( I £ ( HA@ _£(
t (in seconds) is given by s= f ()= £ —4t. Fmd the : + ()=
( velocityat r= 0 at =3, at any tune f. o [( LA qu_@] [[-e) ‘1({:)}
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