- 1. Find the equation of a sphere whose center is (3,-5,1) and radius is 7.
- 2. Find the distance between (2,-3,1) and (3,-5,-1).
- 3. Find the midpoint of (2,-3,1) and (3,-5,-1).
- 4. a. Find the domain of the function. $z = f(x, y) = \ln(y x^2)$

b. Evaluate the function at f(2,6)

Given the function, find the partial derivatives.

5.
$$f(x,y) = x^2 e^y + 2xy^2$$

Find
$$f_x$$
, f_y , f_{xx} , f_{yy} , f_{yx} , and f_{xy} .

6.
$$f(x,y) = \frac{3xy}{x^3 - y^2}$$

Find
$$f_x$$
, f_y .

7. $f(x,y) = \ln(x^3 + y^2)$. Find f_x , f_y .

8. State the critical point and determine whether it is a maximum, minimum, or saddle.

$$D = f_{xx}(x, y) \cdot f_{yy}(x, y) - (f_{xy}(x, y))^{2}$$

$$f(x,y) = x^2 - y^2 - 2x - 6y + xy$$