\qquad

1. NO CALCULATOR Calculate, by hand, the average value of $f(x)=9-x^{2}$, over $[-3,3]$.
2. A car drives down a road in such a way that its velocity (in m / s) at time t (seconds) is $v(t)=5 t^{1 / 2}+3$. Find the car's average velocity (in m / s) between $t=4$ and $t=12$.
3. In a certain city the temperature (in degrees Fahrenheit) t hours after 9:00 A.M. was approximated by the function $T(t)=60+15 \sin \left(\frac{\pi t}{12}\right)$.
a) Determine the temperature at 9:00 A.M.
b) Determine the temperature at 5:00 P.M.
c) Find the average temperature during the period from 9:00 A.M. to 9:00 P.M.
4. At a theater ticket counter, customers arrive at a rate of 120 per hour. What is the probability that 30 or fewer arrive in a period of 20 minutes?
Assume this experiment follows a Poisson distribution.
5. Frequency of Tornadoes: From past data it has been shown that the number of tornadoes hitting the Midwest each year is a random variable whose probability function can be approximated by a Poisson probability function with $n p=7$. Find the following:
a) The probability that, in a given year, fewer than five tornadoes will hit the Midwest.
b) The probability that, in a given year, no more than seven tornadoes will hit the area.
c) The probability that, in a given year, more than three tornadoes will hit the area.
6. Determine the constant k that will make $f(x)=\frac{1}{(x+1)^{3}}$ a probability density function over the interval $[3,7]$.
7. Compute the expected value for the probability density function $f(x)=\frac{4}{3(x+1)^{2}}$ over the interval $[0,3]$
8. The following probability density function describes a continuous random variable X. $f(x)=\frac{6}{27}\left(3 x-x^{2}\right)$ over $[0,3]$.
a) Find the probability that X is greater than 1.
b) Find the probability that X is less than 1.5 .
