Honors Algebra 3-4, P5 (day1) Notes - Interval notation, Solving Inequalities

Properties of inequalities / Solving linear inequalities:

Transitive: a < b and $b < c \Rightarrow a < c$ example:

Z<4 & 4<12 => 2<12

- Addition: a < b and $c < d \Rightarrow a + c < b + d$ example:
- Addition of constant: $a < b \Rightarrow a + c < b + c$ example:

2<4 => 2+1 < 4+1 (3 <5)

Multiplying by a constant: for c > 0, $a < b \Rightarrow ac < bc$

examples: ZXZY >> XZZ

$$c<0, a < b \Rightarrow ac > bc$$

Main thing to remember: if you multiply or divide by a negative number, you need to switch the sign.

Solving linear inequalities: perform algebraic operations, but keep in mind:

- · If multiplying or dividing, switch direction of inequality.
- For double inequalities, perform operations on all 3 terms.

Examples: Solve 5x - 7 > 3x + 9<u>+7</u> _+7 5× >3×+16 2x >16

X>8

Solve: $-3 \le 6x - 1 < 3$ <u>+1</u> +1 +1 -2 5 6 X < 3 サミメとも

Interval notation:

Equation form interval notation old number line book number line Examples: $-2 < x \le 1$ (-z, 1]

Sketching inequalities with absolute values:

For < think 'inside', for > think 'outside', or |x| = distance' from some midet

Examples:

Solving inequalities with absolute values - Use different methods to solve > and < cases:

For < case, make a double inequality:

$$|x - 3| < 2$$

For > case, make two separate inequalities:

$$|x + 2| > 4$$

add lirear care

Honors Algebra 3-4, P5 (day2) Notes – Solving polynomial and rational inequalities

Solving polynomial inequalities means finding all the x values that make the equality true.

Graphically:

Solve: $x^2 - 2x - 3 < 0$

From the plot, it is clear that the expression is negative for x between -1 and 3.

These x-values, -1 and 3 are called 'critical numbers'. They represent where the expression changes sign.

Procedure for solving polynomial inequalities:

- 1. Make right side zero.
- 2. Factor left side to find critical numbers, and arrange them in ascending order.
- 3. Make a table that divides all possible x-values into intervals, dividing at the critical numbers.
- 4. For each interval, choose a test x-value.
- 5. Plug in the test x-value to determine if the left side is + or -.
- 6. Find the intervals that give the desired outcome and write in interval notation.

Example (same as above): Solve: $x^2 - 2x - 3 < 0$

$$(x-3)(x+1) < 0$$

 $(x-3)(x+1) < 0$
 $(x+1) < 0$

Interval	Test x-value	Test	Result
(-0,-1)	-2	(-)(-)=+	X
(-1, 3)	0	(+)(+)=-	
(3,00)	4	(+)(+)=+	X

Another example: Solve: $2x^2 + 5x \ge 12$

$$x = -4$$
 $5x = 3$ 5

	es.
(-0,-0	U (3,00)

Interval	Test x-value	Test	Result
(-cs,-4)	-5	(-)(-)=+	-
(-Y, 臺)	0	(+)(-)=-	×
$\left(\frac{3}{2},\infty\right)$	ے	(+)(+)=+	

Solving rational inequalities: Procedure for solving is similar to polynomials, but with a couple of extra considerations. Rational inequalities are those that contain at least one fractional expression, for example: $\frac{x+12}{x+2} \ge 3$

Procedure for solving rational inequalities:

- 1. Make right side zero.
- 2. Make left side a single fraction (common denominator.)
- 3. Critical numbers are the x-values that make either numerator or denominator zero. (rest of procedure is the same as polynomial procedure)...
- 4. Make a table that divides all possible x-values into intervals, dividing at the critical numbers.
- 5. For each interval, choose a test x-value.
- 6. Plug in the test x-value to determine if the left side is + or -.
- 7. Find the intervals that give the desired outcome and write in interval notation.

Example: Solve:
$$\frac{x+12}{x+2} \ge 3$$

$$\frac{X+P^{2}}{X+P^{2}} - 3 \ge 0$$
 $\frac{X+P^{2}}{X+P^{2}} - 3 \ge 0$
 $\frac{X+P^{2}}{X+P^{2}} \ge 0$
 $\frac{X+P^{2}}{X+P^{2}} \ge 0$
 $\frac{X+P^{2}}{X+P^{2}} \ge 0$

Interval	Test x-value	Test	Result
(-00,-2)	-3	(±) = -	
(-2,3)	0	份二十	
(3,00)	4	(G) = -	
	es vieto gr		

$$\left(-z_{1}3\right)$$

