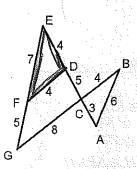
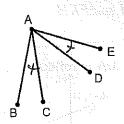
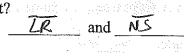

In problems 1-8, decide if each statement is Always true (A), Sometimes true (S) or Never true (N).


- 1. An acute triangle has only one acute angle. N
- 2. If a triangle is scalene, then it is also an obtuse triangle.

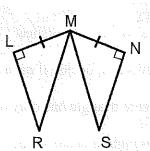
- 3. The altitude of a triangle bisects the side to which it is drawn.
- 4. An altitude of a triangle connects to its opposite side at a point 'inside' the triangle.
- 5. A median of a triangle connects to its opposite side at a point 'inside' the triangle.
- 6. If a triangle is isosceles, its base angles are congruent.
- 7. In a scalene triangle, the smallest angle is opposite the largest side.
- 8. The base of an isosceles triangle is drawn at the bottom of the diagram.
- 9. Given $\triangle ABC \cong \triangle MNP$
 - (a) Solve for x: 12 +
 - (b) Find NP: 22 3x=3
- x-3=28+8 +8 3x=36 A



- 10. In the diagram on the right, find an isosceles triangle, and name the base angles of this triangle: <u>LFED, LEFD</u>


11. In the diagram on the right, if $\angle BAC \cong \angle EAD$ then what property justifies that $\angle BAD \cong \angle EAC$?

Addition Property


12. In a triangle, what name is given to a line segment drawn from a vertex to the opposite side if the line segment is perpendicular to the opposite side?

- 13. In the diagram, if $\overline{LM} \cong \overline{NM}$:
 - (a) In order to prove $\triangle MLR \cong \triangle MNS$ by SAS, what additional two sides must be congruent?

(b) In order to prove $\triangle MLR \cong \triangle MNS$ by HL, what additional two sides must be congruent?

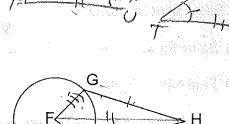
MR

14. Complete the proof:

Given: 1/21 ≅ 1/3 a to be to the total of the statement of the statement of the program of the

∠2 ≅ ∠4

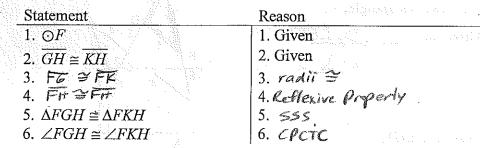
Prove: $\overline{ST} \cong \overline{VU}$

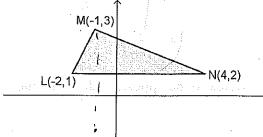

	R	De 216 Vibrae e
e sask	s/0	\v
	/K > X	\8\
ST L	Ŷ "	M)
1		

Statement

1. $\angle 1 \cong \angle 3$,

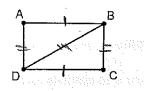
- 2. ∠2≅∠4
- 3. LSTV = ZVUT
- 4. ₩ 3 UF
- 5. ASTU = AVUT
- 6. $\overline{ST} \cong \overline{VU}$


- Reason
- 1. Given
- 2. Given
- 3. Addition Property
- 4. Reflexive Amperly
- 5. ASA
- 6. CPCTC


15. Complete the proof: Given: $\bigcirc F$

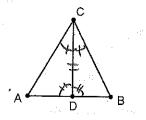
 $GH \cong KH$

Prove: $\angle FGH \cong \angle FKH$

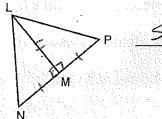


16. If $\triangle LMN$ is reflected over the x-axis, write the coordinates of point M':

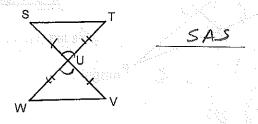
In problems 17-20, mark the diagrams with the given information, and then state the reason for the congruence (SSS, SAS, ASA or HL).


17. $\overline{AB} \cong \overline{CD}$, $\overline{BC} \cong \overline{DA}$

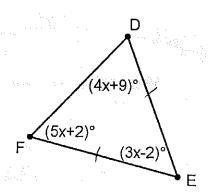
Carlo Maria Para dal


585

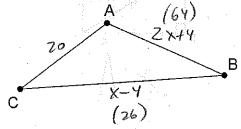
18. $\angle ACD \cong \angle BCD$, $\angle CDA \cong \angle CDB$


ASA

19. \overline{LM} is a median and an altitude,


SAS

20. U is the midpoint of \overline{SV} and \overline{WT}



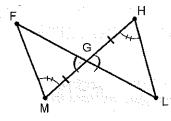
21. If $\overline{DE} \cong \overline{FE}$, find x: $\overline{7}$

$$\begin{array}{l}
\angle F = \angle D \\
5 \times + 2 = 4 \times + 9 \\
-4 \times -4 \times -4 \times \\
\hline
\times + 2 = 9 \\
-2 - 2 \\
\times = 7
\end{array}$$

- 22. The perimeter of $\triangle ABC$ is 110. AB = 2x + 4, BC = x 4 and AC = 20
- (a) Find x: 30
- (b) Is this triangle scalene, isosceles, or equilateral? _Scalene

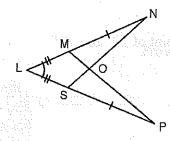
$$20 + 2x+4 + x-4 = 10$$

$$3 \times + 20 = 10$$

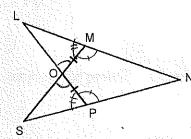

$$-20 = 20$$

$$3 \times = 90$$

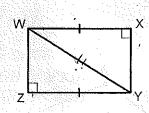
$$X = 30$$


In problems 23-26, name the triangles that are congruent, and give the appropriate congruence theorem (SSS, SAS, ASA, or HL).

23.


ΔFGM ≅ <u>ΔLGH</u> ASA

24.

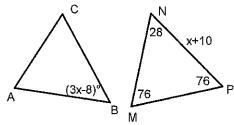

ΔLMP ≅ <u>Δ</u>LSN

25.

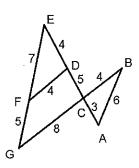
ΔLOM ≅ <u>A</u>SOP

26.

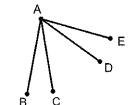
ΔWYZ≅_<u>A</u>YWX HL


Geo	m	Atr	•
C-co	m	etr	٦

Chapter 3 Review Worksheet

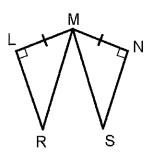

Name	
Date	Period

In problems 1-8, decide if each statement is Always true (A), Sometimes true (S) or Never true (N).


- 1. An acute triangle has only one acute angle.
- 2. If a triangle is scalene, then it is also an obtuse triangle.
- 3. The altitude of a triangle bisects the side to which it is drawn.
- 4. An altitude of a triangle connects to its opposite side at a point 'inside' the triangle.
- 5. A median of a triangle connects to its opposite side at a point 'inside' the triangle.
- 6. If a triangle is isosceles, its base angles are congruent.
- 7. In a scalene triangle, the smallest angle is opposite the largest side.
- 8. The base of an isosceles triangle is drawn at the bottom of the diagram.
- 9. Given $\triangle ABC \cong \triangle MNP$
 - (a) Solve for x:
 - (b) Find NP:

- (c) Are these triangles equilateral, isosceles, or scalene?
- 10. In the diagram on the right, find an isosceles triangle, and name the base angles of this triangle:

11. In the diagram on the right, if $\angle BAC \cong \angle EAD$ then what property justifies that $\angle BAD \cong \angle EAC$?

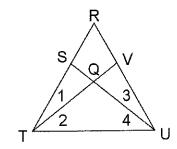

12. In a triangle, what name is given to a line segment drawn from a vertex to the opposite side if the line segment is perpendicular to the opposite side?

- 13. In the diagram, if $\overline{LM} \cong \overline{NM}$:
 - (a) In order to prove $\triangle MLR \cong \triangle MNS$ by SAS, what additional two sides must be congruent?

and

(b) In order to prove $\triangle MLR \cong \triangle MNS$ by HL, what additional two sides must be congruent?

____ and ____



14. Complete the proof:

Given: $\angle 1 \cong \angle 3$

∠2≅∠4

Prove: $\overline{ST} \cong \overline{VU}$

Statement

Reason

 $1. \angle 1 \cong \angle 3$,

1.

2. ∠2 ≅ ∠4

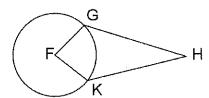
2.

4.

3. 4.

5.

5. ASA


6. $\overline{ST} \cong \overline{VU}$

- 6. CPCTC
- 15. Complete the proof:

Given: $\bigcirc F$

 $\overline{GH} \cong \overline{KH}$

Prove: $\angle FGH \cong \angle FKH$

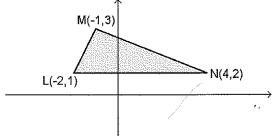
Statement

Reason

1. ⊙*F*

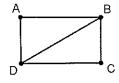
1. Given

2. $\overline{GH} \cong \overline{KH}$

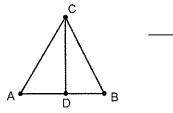

2. Given

3.

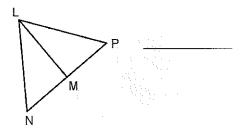
3.

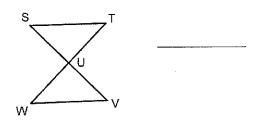

4.

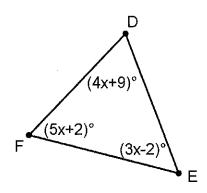
- 4.
- 5. $\Delta FGH \cong \Delta FKH$
- 5.
- 6. $\angle FGH \cong \angle FKH$
- 6.
- 16. If ΔLMN is reflected over the x-axis, write the coordinates of point M':



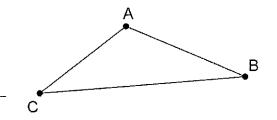
In problems 17-20, <u>mark the diagrams with the given information</u>, and then <u>state the reason for the congruence</u> (SSS, SAS, ASA or HL).


17. $\overline{AB} \cong \overline{CD}$, $\overline{BC} \cong \overline{DA}$

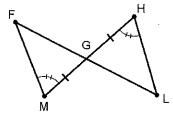

18. $\angle ACD \cong \angle BCD$, $\angle CDA \cong \angle CDB$


19. \overline{LM} is a median and an altitude,

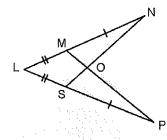
20. U is the midpoint of \overline{SV} and \overline{WT}


21. If $\overline{DE} \cong \overline{FE}$, find x:

22. The perimeter of $\triangle ABC$ is 110. AB = 2x + 4, BC = x - 4 and AC = 20

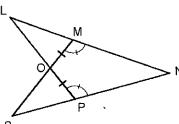

(a) Find x: _____

(b) Is this triangle scalene, isosceles, or equilateral? _


In problems 23-26, name the triangles that are congruent, and give the appropriate congruence theorem (SSS, SAS, ASA, or HL).

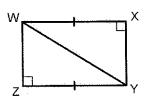
23.

 $\Delta FGM \cong$


24.

 $\Delta LMP \cong$

.


25.

 $\Delta LOM \cong \underline{\hspace{1cm}}$

S

26.

 $\Delta WYZ \cong$

....