Geometry, Supplemental - Counting Problems: Simple cases, Pascal's Triangle

Example: At an amusement park, you can get a combo meal which includes one main item (pizza or burger), one side (fries or chips) and a drink (diet coke or regular coke). How many different combo meals can you get?

Two strategies for simple counting cases: (Pitta=P, Fire = F, Diet = D, etc)

List all possibilities

Example: License plates in a small county consist of 1 letter followed by 3 numbers. How many different license plates can be made?

Sometimes, difficult or impossible to list all possibilities or make a tree diagram.

Use 'boxes' method:

Combo meal example:

License plate example:

Example: John, Cassie, Pat, and Ally line up next to each other. How many different ways can

they be lined up?

Pascal's Triangle:

Z number above it. 15 20 IT 6 7 21 35 35 21 7

Geometry, Supplemental - Counting Problems: Combinations, Permutations

'Choosing' problems can be tricky. There are two different cases: order matters and order doesn't matter. Examples:

On a sports team with 10 players, you need to choose a team captain, a co-captain and an equipment manager. Each person has a different job.

On a sports team with 10 players, you need to choose 3 players to make a 'leadership team' that work together to share all jobs to lead the team.

Order matters - 'Permutation'

when we pick 3 people, those people can be rearranged to different ways - 911 6 permutations are just 1 combination.

You can use 'boxes' to solve, but for Combinations (order doesn't matter) you must also divide by boxes for how many ways those you choose can be rearranged.

Or...you can use the Permutation and Combination formulas:

n! = 'n factorial'

Examples:
$$5! = 5.4.3.2.1 = 120$$

 $3! = 3.2.1 = 6$

<u>Permutations</u>

$$P_r = \frac{n!}{(n-r)!}$$
Lowtor n' things, chose'r)

(or der matters)

On a sports team with 10 players,

On a sports team with 10 players, you need to choose a team captain, a co-captain and an equipment manager. Each person has a different job.

order matters, permutation.

$$P_{3} = \frac{n!}{(n-3)!}$$

$$= \frac{|0|}{(n-3)!}$$

$$= \frac{|0|}{(n-3)!}$$

$$= \frac{|0|}{10!}$$

$$= \frac{|0|}{10!}$$

$$= \frac{10!}{10!}$$

Combinations

On a sports team with 10 players, you need to choose 3 players to make a 'leadership team' that work together to share all jobs to lead the team.

order doesn't matter, Combination.

$$C' = \frac{n!}{(n-r)!r!}$$

$$= \frac{10!}{(10-3)!3!}$$

$$= \frac{10!}{7!3!}$$

Permutations, you can just (usually) just use the 'boxes' method. For Combinations, you can find ${}_{n}C_{r}$ using Pascal's triangle (count rows and columns starting with zero, not one):

row 0 1

row 1 1 1

row 2 1 2 1

row 3 1 3 3 1

row 4 1 4 6 4 1

row 5 1 5 10 10 5 1

row 6 1 6 15 20 15 6 1

 $C = 10 \qquad \left(\frac{n!}{(n-r)!} - \frac{5!}{5!} \frac{2!}{2!} \right)$ And column $\frac{7}{3!} + \frac{5!}{3!} \frac{2!}{2!}$ And column $\frac{7}{3!} + \frac{3!}{2!} \frac{2!}{2!}$ $\frac{7}{3!} + \frac{7}{3!} = \frac{7}{3!} = \frac{7}{3!}$

Permutations example (order does matter). Of 20 people in a class, how many ways can you pick a President, Vice-Presidents and a Secretary?

Using formula:

Leasiest Using boxes:

Combinations)example: (order does not matter): A pizza shop offers 5 different toppings. How many different 3-item pizzas can be made?

Using formula:

$$\begin{array}{l}
C_{3} = (n-r)!r! \\
= \frac{5!}{(r-3)!3!} \\
= \frac{5!}{2!3!} \\
= \frac{5!}{2!3!} \\
= \frac{5!}{2!1 \cdot 3!2!}
\end{array}$$

= 54 - 2 10

* ewiest Using Pascal's triangle:

Using boxes: