Geometry, 10.1: Circles

Definitions

radius – line segment, center to edge of circle diameter – line segment dividing circle in half

congruent circles – same radius

concentric circles – same center, different radii

interior / exterior of circle

chord - line segment with endpoints on circle

Circumference and Area:

3 related theorems about circles:

If a radius is perpendicular to a chord, then it bisects the chord:

If a radius bisects a chord, it is perpendicular to the chord:

• The perpendicular bisector of a chord passes through the center of a circle:

Ex: If AB=16 and radius=46, what is the distance from center to the chord AB?

Ex: If diameter=34, and distance from center to chord is 8, what is the length of the chord?

Practice:

#1. If length of a chord on circle P is 24, and distance from center of circle to the chord is 9, what is the radius of circle P?

#2. Two circles intersect and have a common chord 32 in long. The centers of the circles are 42 in apart. The radius of one circle is 20. What is the radius of the other circle?

#3. $\bigcirc P$ just touches the x-axis. P= (20,13) and Q=(24,16).

- a) Find the radius of $\bigcirc P$
- b) Find PQ = (5)
- c) Find the length of \overline{AB}

$$d = ((x_2 - x_1)^2 + (y_2 - y_1)^2)$$

$$d = ((x_1 - x_2)^2 + (16 - 13)^2)$$

$$d = ((y_1)^2 + (3)^2)$$

$$d = (6 + 9)$$

$$d = (5)$$

Geometry, 10.2: Chords and Circles

2 related theorems about chords and circles

- If two chords of a circle are equidistant from the center. then they are congruent.
- If two chords of a circle are congruent. then they are equidistant from the center of the circle.

Examples:

Given:
$$\bigcirc 0$$
, $\overline{AB} \cong \overline{CD}$
 $OP = 12x - 5$, $OQ = 4x + 19$

Given:
$$\bigcirc 0$$
, $\overline{PQ} \cong \overline{PR}$, $AB = 6x + 14$, $CD = 4 - 4x$

In a circle, chord AB is 325 cm long and chord CD is 3 1/4 m long. Which is closer to the center?

$$3 \frac{1}{4} m = 3.25 \frac{100 \text{ cm}}{1 \text{ m}} = \frac{325 \text{ cm}}{1 \text{ m}}$$

$$4 \frac{325 \text{ cm}}{1 \text{ m}} = \frac{325 \text{ cm}}{1 \text{ m}} = \frac{325 \text{ cm}}{1 \text{ m}}$$

$$4 \frac{325 \text{ cm}}{1 \text{ m}} = \frac{325 \text{ cm}}{1 \text{ m}}$$

Geometry, 10.3: Arcs of a Circle

Arcs:

arc = a portion of a circle, consists of 2 endpoints and all the points on the circle between these endpoints:

semicircle: an arc whose endpoints are the endpoints of a diameter (Named using 3 points)

minor arc: an arc that is __(ess__ than a semicircle: (Named using only the 2 endpoints)

major arc: an arc that is more than a semicircle: (Named using 3 points)

Measure of an arc:

Minor arc or semicircle: measure of arc is same as the measure of the central angle that intercepts that arc. M ST = 600

Major arc: measure of a major arc is 360° minus the measure of the minor arc with same endpoints.

Examples:

1 Match each item in the left column with the correct term in the right column.

a ORS 4 Radius 2 Diameter b OS 3 Chord c RQS a RS 4 Minor arc 5 Major arc 6 Semicircle 7 Central angle

3 In circle E, find each of the following.

Congruent arcs:

Two arcs are congruent whenever they have the Same measure

and are part of the same circle or congruent circles

Congruentacs

Congruent chords - arcs - central angles:

The textbook has 6 theorems on p. 453. They can be summarized as:

In the Same circle or in congruent circles:

congruent chords <> congruent arcs <> congruent central angles

Examples:

Find:

a) BT
$$= 4$$

c) $m \angle BRT = 58^{\circ}$

m LAQB= 180-50

Geometry, 10.4 day 1: Secants and Tangents

Secant - a line that intersects a circle at exactly two points.

Secant segment – part of a secant line from an external point, to the farthest intersection point of secant and circle.

External part – of a secant segment is the part outside the circle.

Tangent - a line that intersects a circle at exactly one point.

A tangent line is <u>perpendicular</u> to the radius drawn to the point of contact.

If a line is perpendicular to a radius at its outer endpoint, then it is ______ to the circle.

Two-tangent Theorem: If two tangents are drawn to a circle from an external point, then those segments are congruent.

Practice:

Use the circle to identify the parts of the circle:

Center		
Radius	OR	
Chord	ĀB	
Diameter	eD.	^ - 글로워 하고 -
Point of tar	igency	4
Tangent	W6	
Secant	Z X	_
Minor arc	RD	-
Major are	RZD	
Semi-circle	CTD	_

Tangent Circles - circles that intersect each other at exactly one point.

Externally tangent circles

Concentric Circles - have the same center

Internally tangent circles

Examples:

If tangent segment BC is 15 cm long, and circle has radius of 8 cm, find length AC.

Find OC:

$$14+4x = 19-6x$$
 $14+10x = 19$
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14
 -14

HW problem #2: Concentric circles with radii 8 and 10. Find length XY

Geometry, 10.4 day 2: Secants and Tangents

Line of Centers and Common Tangents:

Line of Centers – line connecting centers of circles.

Common Tangent - line tangent to two circles.

The Common-Tangent Procedure:

- 1) Draw the segment joining the centers.
- 2) Draw the radii to the points of contact.
- Through the center of the smaller circle, draw a line parallel to the common tangent.
- 4) This line will intersect the radius of the larger circle to form a rectangle and right triangle.
- 5) Use Pythagorean Theorem and rectangle properties to solve.

Example: Find length BE

Example: 'walk-around' problem: Each side of ABCD is tangent to the circle. If AB=10, BC=15, AD=18, find CD.

$$CD = 18 - x + 18 + (10 - x)$$

 $CD = 15 - x + 18 - 10 + x$
 $CD = [23]$

Geometry, 10.5: Angles Related to a Circle

Names of different angles in circles and how angle measure relates to arc measure:

Central angles: Vertex in center -> angle = arc

arc = where the sides of angle cut! the circle

Inscribed and Tangent-chord angles: Vertex on circle -> angle = $\frac{1}{2}$ arc

$$\frac{62}{2} = 31^{\circ}$$

<u>Chord-chord angles</u>: Vertex in circle, not at center -> angle = $\frac{1}{2}$ (big arc + little arc)

D
$$= \frac{1}{14446} = 60^{\circ}$$

$$= \frac{1}{1446} = 60^{\circ}$$

$$= \frac{1}{1446} = 60^{\circ}$$

$$= \frac{1}{1446} = 60^{\circ}$$

$$= \frac{1}{1446} = 60^{\circ}$$

Secant-secant, Tangent-tangent, and Secant-tangent angles:

Vertex outside circle -> angle = $\frac{1}{2}$ (big arc - little arc)

$$m(P = \frac{1}{2}(80-20)$$

$$= \frac{1}{2}(60)$$

$$= \frac{1}{300}$$

$$mlc = \frac{1}{2}(160-100)$$

$$= \frac{1}{2}(160)$$

$$= (80^{\circ})$$

Practice:

#1.
$$\widehat{mAB} = 62^{\circ}$$
, $m \angle O = ?$

#4. CB is tangent at B
$$\widehat{mAB} = 150^{\circ}$$
, $m\angle CBA = ?$

#5.
$$\widehat{mDB} = 170^{\circ}$$
, $\widehat{mAD} = 135^{\circ}$, $m\angle C = ?$

Geometry, 10.6: Arc-Angle Theorems

Same arc, Inscribed and Tangent-chord angles

If 2 inscribed angles or 2 tangent-chord angles intercept the same arc, they are congruent. Example:

Tangent-chard B C

Example:

Congruent arcs, Inscribed and Tangent-chord angles

If 2 inscribed angles or 2 tangent-chord angles intercept 2 congruent arcs, they are congruent.

Example:

Example:

Angles Inscribed in Semicircles - are right angles

Tangent-Tangent Angles and Minor Arcs

The sum of measures of a tangent-tangent angle and its minor arc is 180.

$$m\angle C + m\widehat{AB} = 180^{\circ}$$

Practice:

#1. M is midpoint of arc \widehat{AB} , find \widehat{mCD}

$$8+7=3x-3$$

 $3=2x$
 $1=2x-31$
 $19=x$

#2. In circle P, BC is a diameter, AC=12 and BC=16. Find the radius of the circle.

#3.
$$m \angle S = 88^{\circ}$$
, $\widehat{QT} = 104^{\circ}$, $\widehat{ST} = 94^{\circ}$

PQ is tangent to the circle.

Find: a)
$$m \angle P$$
 b) $m \angle STQ = 83$

Geometry, 10.7: Inscribed and Circumscribed Polygons

Inscribed = drawn inside

Circumscribed = drawn around

a quadrilateral circumscribed about a circle

Incenter and Circumcenter of a polygon:

acircle circumscribed about a trimple

in center of polygon

Circumcenter = center of circle circumscribed about a polygon

Example: Is P ar incenter or a circumcenter of polygon ABCD? (circle is 'in' the polygon)

and 5m=80°, PS=90°, PT=70° Example: Given the diagram, find:

a) TM = 120 / b) the 4 angles of the polygon

$$m(M = \frac{1}{2}(90+70) = \frac{1}{2}(160) = 80^{3} + 180^{3}$$

 $l P = \frac{1}{2}(80+120) = \frac{1}{2}(200) = 200^{3} + 180^{3}$
 $m(S = \frac{1}{2}(120+70) = \frac{1}{2}(190) = 95^{3} + 180^{3}$
 $m(LT = \frac{1}{2}(90+70) = \frac{1}{2}(170) = 85^{3} + 180^{3}$

80° 1000

What do you notice about the sum of opposite angles? Hey add to 185

Theorem: If a quadrilateral is inscribed in a circle, its opposite angles are supplementary (add to 180°).

Try this: Draw a parallelogram inscribed in a circle:

Theorem: If a parallelogram is inscribed in a circle, it must be a rectangle

Practice:

#1. Given: $\angle A = 104^{\circ}$, $\angle B = 67^{\circ}$

Find: $m \angle C$ and $m \angle D$

#2. Given: $\widehat{mAD} = 110^{\circ}$, $\widehat{mAB} = 100^{\circ}$ Find: $m \angle C$ and $m \angle A$ 210 21 MLA = 180 -105 \$ 25

#3. Parallelogram RECT is inscribed in circle O. If RE=6 and EC=8, find the perimeter of

triangle ECO.

#4. Given: $m\angle D = x + 10$, $m\angle B = 70$

Find: $m \angle D$

Geometry, 10.8 day 1: The Power Theorems

Chord-Chord Power Theorem: If 2 chords of a circle intersect:
the 2 pieces of one chord multiplied = the 2 pieces of the other chord multiplied

Secant-Secant Power Theorem: For 2 secants from same external point: (whole secant) x (external part) = (whole secant) x (external part)

Tangent-Secant Power Theorem: For tangent and secant from same external point: (whole secant) x (external part of secant) = (tangent)²

Practice: Find x

Find radius of circle:

Geometry, 10.9: Circumference and Arc Length

Circumference of a circle = distance around the circle: $C = 2\pi r$

Arc length = a fraction of the circumference = $(fraction) \times (circumference)$

Example: If a circle's circumference is 100 inches, what is the arc length of an arc with measure of 180°?

Formula arc length =
$$(fraction) \times (circumference)$$

arc length = $\frac{arc}{360} \times (100 \text{ in})$
= $(\frac{1}{2}) \times 100 \text{ in}$

Example: If a circle's circumference is 200 inches, what is the arc length of an arc with measure of 90°?

are length =
$$(fraction) \times (ciramference)$$

= $(\frac{90}{360}) \times (200in)$
= $(\frac{4}{7}) \times (200in)$
= $(\frac{4}{7}) \times (200in)$
= $(\frac{4}{7}) \times (200in)$

Example: If a circle's radius is 6, what is the arc length of a 90° arc?

$$arc \ length = (fraction) \times (circumdereral)$$

$$= (\frac{90}{360}) \times (2\pi e)$$

$$= (\frac{90}{360}) \times (2\pi e)$$

$$= (\frac{1}{4}) \times (2\pi e)$$

$$= (\frac{1}{4}) \times (12\pi) = (\frac{1}{4}) \times (12\pi)$$

$$= (\frac{1}{4}) \times (12\pi) = (\frac{1}{4}) \times (12\pi)$$

$$= (\frac{1}{4}) \times (37.68) = 37.68 = (\frac{1}{4}) \times (37.68) = 37.68 = \frac{1}{4}$$

Example: If a circle's radius is 10, what is the arc length of a 240° arc?

HW #4. A bicycle has wheels 30 cm in diameter. Find, the to nearest tenth of a centimeter, the distance that the bicycle moves forward during:

a) 1 revolution

b) 10 revolutions

C=211r = 211(11) = 3077 = 30(3.14) 3(14) C= 94(20)

HW #5a. Find the complete perimeter of the figure.

HW #5d. Find the complete perimeter of the figure.

P= 211+511+3+3 = 16+711/

HW #10. There are 100 turns of thread on a spool with a diameter of 4 cm. Find the length of the thread to the nearest centimeter.

3/17

