## Definition of Directional Derivative

Partial derivatives in the direction of the x and y axes are defined by the following limits:

$$
\begin{aligned}
& f_{x}\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h, y_{0}\right)-f\left(x_{0}, y_{0}\right)}{h} \\
& f_{y}\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}, y_{0}+h\right)-f\left(x_{0}, y_{0}\right)}{h}
\end{aligned}
$$

If we want to find the derivative in any direction, we can first specify that direction by using a unit direction vector in the domain:

$$
\text { unit direction vector, } \vec{u}=\langle a, b\rangle
$$



Then, considering a small motion in this direction in 3D...

...we can imagine starting at an initial point, $P\left(x_{0}, y_{0}, z_{0}\right)$ and moving in the direction of the unit direction vector a small distance $h$ in the domain. On the surface, this brings us to point $Q(x, y, z)$. The derivative in this direction is then the change in $z$ (height) on the surface divided by this distance $h$.

Vector $\overrightarrow{P^{\prime} Q^{\prime}}=h \vec{u}=\langle h a, h b\rangle$ is parallel to $\vec{u}$ so there is some scalar $h$ that scales $u$ back to this small change in the direction. This means that:

$$
\begin{aligned}
& x-x_{0}=h a \\
& y-y_{0}=h b
\end{aligned} \quad \text { so } \quad \begin{array}{r}
x=x_{0}+h a \\
y=y_{0}+h b
\end{array}
$$

The change in $z$ over $h$ is then...

$$
\frac{\Delta z}{h}=\frac{z-z_{0}}{h}=\frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

...and we can define the directional derivative as:

$$
D_{u} f\left(x_{0}, y_{0}\right)=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)}{h}
$$

If the unit vector is in the direction of the $x$ or $y$ axis, this expression becomes the derivatives $f_{x}$ and $f_{y}$ so the regular partial derivatives are just special cases of this more general directional derivative.

## Directional Derivative can be computed from the partial derivatives

Define a function $g$ of a variable representing the small change in the direction (in the domain), $h$ :

$$
g(h)=f\left(x_{0}+h a, y_{0}+h b\right)
$$

Then by the usual definition of a derivative near $h=0$ :

$$
\begin{aligned}
g^{\prime}(0) & =\lim _{h \rightarrow 0} \frac{g(h)-h(0)}{h}=\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h a, y_{0}+h b\right)-f\left(x_{0}, y_{0}\right)}{h} \\
& =D_{u} f\left(x_{0}, y_{0}\right)
\end{aligned}
$$

But at the same time, we could also write the function $g(h)$ as a function of $x$ and $y: g(h)=f(x, y)$ and by the Chain Rule:

$$
\begin{aligned}
g^{\prime}(h) & =\frac{\partial f}{\partial x} \frac{d x}{d h}+\frac{\partial f}{\partial y} \frac{d y}{d h} \\
& =f_{x}(x, y) a+f_{y}(x, y) b
\end{aligned}
$$

When $h=0, x=x_{0}$ and $y=y_{0}$, therefore: $g^{\prime}(0)=f_{x}\left(x_{0}, y_{0}\right) a+f_{y}\left(x_{0}, y_{0}\right) b$
But also $g^{\prime}(0)=D_{u} f\left(x_{0}, y_{0}\right)$ so by the Transitive Property:

$$
\begin{aligned}
& D_{u} f\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right) a+f_{y}\left(x_{0}, y_{0}\right) b \\
& \quad \text { or } \\
& D_{u} f\left(x_{0}, y_{0}\right)=f_{x}\left(x_{0}, y_{0}\right) \cos \theta+f_{y}\left(x_{0}, y_{0}\right) \sin \theta
\end{aligned}
$$

The result from the last section can be written as the dot product of two vectors:

$$
\begin{aligned}
D_{u} f(x, y) & =f_{x}(x, y) a+f_{y}(x, y) b \\
D_{u} f(x, y) & =\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle \cdot\langle a, b\rangle \\
D_{u} f(x, y) & =\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle \cdot \vec{u}
\end{aligned}
$$

The first vector is very useful, and is called the Gradient Vector:

$$
\nabla f(x, y)=\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle
$$

## Directional derivative defined using the gradient vector

So because of the way the gradient is defined:

$$
\begin{aligned}
D_{u} f(x, y) & =\left\langle f_{x}(x, y), f_{y}(x, y)\right\rangle \cdot \vec{u} \\
D_{u} f(x, y) & =\nabla f(x, y) \cdot \vec{u}
\end{aligned}
$$

## Why gradient is perpendicular to tangent plane (tangent to a level surface)

Suppose $S$ is a surface with equation $F(x, y, z)=k$ and let $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ be a point on $S$. Let $C$ be any curve that lies on surface $S$ and passes through the point $P$ :


Curve $C$ can be described using a vector function, $\vec{r}(t)=\langle x(t), y(t), z(t)\rangle$. Define $t_{0}$ to be the parameter value along the curve at the point $P$, so $\vec{r}_{0}(t)=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$. This point must satisfy the equation for the level surface,

$$
F(x(t), y(t), z(t))=k
$$

If we differentiate this equation with respect to the parameter and use the Chain Rule:

$$
\begin{aligned}
& \frac{d}{d t}[F(x(t), y(t), z(t))]=\frac{d}{d t}[k] \\
& \frac{\partial F}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial F}{\partial y} \frac{\partial y}{\partial t}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial t}=0
\end{aligned}
$$

But $\nabla F=\left\langle F_{x}, F_{y}, F_{z}\right\rangle$ and $\overrightarrow{r^{\prime}}(t)=\left\langle x^{\prime}(t), y^{\prime}(t), z^{\prime}(t)\right\rangle$ so we can rewrite the left side:

$$
\nabla F \cdot \overrightarrow{r^{\prime}}(t)=0
$$

At point $P$ : $\nabla F\left(x_{0}, y_{0}, z_{0}\right) \cdot \overrightarrow{r^{\prime}}\left(t_{0}\right)=0$ which means that the gradient vector at this point is perpendicular to the tangent vector $\overrightarrow{r^{\prime}}\left(t_{0}\right)$ along any curve $C$ on $S$ that passes through $P$, and means the gradient is perpendicular to what we can call the tangent plane at this point to the surface.

## Equation of the tangent plane to a surface

This also means that the gradient is a normal vector to the tangent plane, and because planes are defined using a normal vector and a point...

$$
\vec{n}=\langle a, b, c\rangle=\left\langle F_{x}, F_{y}, F_{z}\right\rangle \quad \vec{r}_{0}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle
$$

...the equation for the tangent plane is given by...

$$
\begin{aligned}
& a x+b y+c z=\vec{n} \bullet \vec{r}_{0} \\
& F_{x} x+F_{y} y+F_{z} z=\left\langle F_{x}, F_{y}, F_{z}\right\rangle \cdot\left\langle x_{0}, y_{0}, z_{0}\right\rangle \\
& F_{x} x+F_{y} y+F_{z} z=F_{x} x_{0}+F_{y} y_{0}+F_{z} z_{0} \\
& F_{x}\left(x-x_{0}\right)+F_{y}\left(y-y_{0}\right)+F_{z}\left(z-z_{0}\right)=0
\end{aligned}
$$

...where the partial derivatives are evaluated at the point.

