
Derivations/Proofs for Directional Derivative and Gradient Vector 
 
Definition of Directional Derivative 
 
Partial derivatives in the direction of the x and y axes are defined by the following limits: 
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If we want to find the derivative in any direction, we can first specify that direction by using a unit direction 
vector in the domain: 

                              
Then, considering a small motion in this direction in 3D… 

                  
…we can imagine starting at an initial point, P(x0,y0,z0) and moving in the direction of the unit direction vector 
a small distance h in the domain.  On the surface, this brings us to point Q(x,y,z).  The derivative in this 
direction is then the change in z (height) on the surface divided by this distance h.   
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 so there is some scalar h that scales u back to this small change in 

the direction.  This means that: 
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The change in z over h is then… 
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…and we can define the directional derivative as: 
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If the unit vector is in the direction of the x or y axis, this expression becomes the derivatives fx and fy so the 
regular partial derivatives are just special cases of this more general directional derivative. 
 
 
Directional Derivative can be computed from the partial derivatives 
 
Define a function g of a variable representing the small change in the direction (in the domain), h: 

                            0 0,g h f x ha y hb    

 
Then by the usual definition of a derivative near h=0: 
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But at the same time, we could also write the function g(h) as a function of x and y:     ,g h f x y  

and by the Chain Rule: 
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When 0 00,h x x and y y   , therefore:       0 0 0 00 , ,x yg f x y a f x y b    

But also    0 00 ,ug D f x y   so by the Transitive Property: 
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Definition of the Gradient Vector 
 
The result from the last section can be written as the dot product of two vectors: 
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The first vector is very useful, and is called the Gradient Vector: 

                                                 , , , ,x yf x y f x y f x y   

 

Directional derivative defined using the gradient vector 
 
So because of the way the gradient is defined: 
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Why gradient is perpendicular to tangent plane (tangent to a level surface) 
 
Suppose S is a surface with equation F(x,y,z)=k and let P0(x0,y0,z0) be a point on S.  Let C be any curve that lies on surface 
S and passes through the point P: 

                            

Curve C can be described using a vector function,         , ,r t x t y t z t
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the curve at the point P, so  0 0 0 0, ,r t x y z
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.  This point must satisfy the equation for the level surface,                   
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If we differentiate this equation with respect to the parameter and use the Chain Rule: 
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 along any curve C on S that passes through P, and means the gradient is perpendicular to what we 

can call the tangent plane at this point to the surface.      



Equation of the tangent plane to a surface 
 
This also means that the gradient is a normal vector to the tangent plane, and because planes are defined using a 
normal  vector and a point… 
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…the equation for the tangent plane is given by… 
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…where the partial derivatives are evaluated at the point. 


