Differential Equations — Lesson Notes — Chapter 7: Laplace Transforms

7.1: Laplace Transform

(A quick diversion from Differential Equations to learn about a related topic which in the next
section we will be able to use to solve Differential Equations.)

Transforms

A transform is a mathematical operation which operates on a function to transform it to a
different function. The transforms that we've encountered so far transform a single-variable

function into a different single-variable function, with both input and output having the same
variable:

Vertical Stretch: g(x) = Af(x)

Horizontal Shitt:  g(x)= f(x-2)

(value of derivative
equals slope of
tangent line to input
function at that x)

Derivative: f'(x)= JETGW

Integral Transforms

An integral transform is just a transform which involves computing an integral. Our standard
integral is an integral transform and the result is based on the undoing the derivative, so it is

called the antiderivative (and the definite integral has the interpretation area under the input
function curve):

Integral:  F(x)= _[f(x) dt

(value of integral is
related to the area
under the input
function curve)

Definite Integral: ~ F(b)—F (a)= _[f(x) dx

Linear Transforms

A transformation is linear if it is true that when the input to the transformation can be written as
separate terms combined by adding (and subtracting), the output is the result of adding (or
subtracting) the transformed terms. Derivative and integral transforms are linear transforms:

S]] )]

[(f (x)2g(x))de=[ 1 (x) et [g(x)dr



Multivariable Function Transforms

We can now define a transform for a multivariable function and specifically the Laplace
Transform. In the transformations we've seen so far, the functions have been functions of one
variable. But if we multiply the function to be transformed by a multivariable function and then
take an integral, we can define an integral transform as follows...

_[K(s,t)f(t)dt
0
We are starting with an input function f(l‘) which is a function of only the variable {, but by

multiplying by the K function, which is called the kernel of the transform, the resulting output of the
integration will be a function of the newly introduced variable s.

The notation convention for the resulting output function is to use the same function letter, but
capitalized:

[K(s.0) f () de=F (s)
0
The Laplace Transform

The Laplace Transform is an integral transform with the kernel function K (s,t) =g

X {f (0} =F(s)=[e"r (@)t

This transform isn't defined unless the integral converges, so it only works with some functions.

The Laplace Transform of f(t) =1

Let's start with the simplest example: [ (I) =]

Using the definition: 32 {f(z)} =F(s)= Te_‘”f(.f) dt

~[e (1) at

b
=lim|e ™ dt



The Laplace Transform of f(f) =sin 2/

As a more complex example, using the definition to compute the Laplace transform of sin 2¢:

We would need to start with integration by parts, which we have to do twice and this is the form
that reproduces the original, so we gather terms on the left and divide:

Ie““ sin 2¢ dt
]

by parts :u=sm2t dv=edt

du=2cos2tdt v= —le"‘
S

—Ivdu =—~]-e_" Sm%—j[—le_”)Zcos 2dt
s

s
1, . 2re .
——esm2t+—| |e ™ cos2t dt
: all ]
by parts again: u=cos2t dv=e"di

du=-2sin2tdt v= —-l-e_"
s

—J'vdu :—le_‘“ cosZt~I(—%e_”]—28in21‘dt

S

S

[_19‘“ cos 21 — EIe'” sin 2¢ dt:|
s

- le_’I sin2f + E[— 1e_” cos 2t — . e ¥'sin2¢ dt]
AY Ay S S

J.e"‘ sin2¢ dt =— 13“" sin 2:—323'” cos 2t — izj.e"’ sin 27 dt
s s s

[1 - izjj.e_” sin 2t dtf = —1e_ﬂ sin 2¢ —%e_” cos 2t
S 8 Y

) -7)
2
j e sin2tdt=~—2 _esin2+>— 2L
(es) o (d)
1+—2 1'1'—2
AY A

-2
J' fsin2tdt =——7~— ( ) — 7 _esin2t+—~—~2— ( ) e cos2t

(32-1-4) (s + )

e~ cos2t



The Laplace Transform of f(f) =sin2¢

...then we still need to evaluate this by plugging in the limits of integration, but because the top is
infinity, we use a constant and take the limit for the infinity terms:

T i o | s} s (-2) .
_!-e szrdt:;!l_lﬂ (S2+4)e sm2t+(sz+4)e cos 2t

= —(ﬁs) e’ sin 0 + (ﬁz) e
(32 + 4) (s2 + 4)
The last two terms we can evaluate with zero plugged in:

&) *% sin +—(_2) e’ cos
(s+) ea)

% cos0

| “"))(1)(0)+(( 2))(1)(1)

(S +4

2
s*+4
...for the first two terms we can move the exponent to the bottom of the fraction:

- (_S) —s1 - ( ) —5t
lim| -—e "sin2t+-—+ ¢ " cos2t
b3 (s2 +4) (9 +4)

) —s \smn2f . —S \cos2t
Iim z — +1im : -
boo\ §°+4) e boo\§°+4) €

If s > 0, then as b gets infinitely large, the numerators of these fractions cycle between -1
and 1 but the denominators get infinitely large, so the fractions go to zero:

—s \smn2f . —s \cos2!f
Iim +lim 3
bool g2 44 ) ¢ bow\sP44) €”
—s \(-1ltol) ( —s \(-11t01)
2 + 2
s +4 o0 s +4 o0

10+ lim 2_3 0
s> +4 b 57+ 4

...which means that the transform for f(t) =sin2¢ is:

in2¢}=|e"sin2tdt=0+0+0
Z {sin 21} }[e sin +0+ +s )

Z {sin2}=

Whew!

s’ +4

The good news is that Laplace transforms for many commonly encountered functions are
already worked out for us in the Laplace Transform table, which we will use...



f(o

PLF(D) = F(s)

10.
11.
12.
13.‘
14.
: 15.
16.
17.
18.

19.

tn

t_”2

tllZ

ta

. sin kt

. cos kt

. sin® kt

cos? kr
atr

sinh kz
cosh kt
sinh?kt
cosh’kt.
te
tYI eﬂl

e sin.kt

e cos kt

n a positive integer

2k?
s(s? + 4k

s2+ 282
s(s? + 4k%)

1
s—a

k
sz_kz

s
s2_k2

2K
s(s? — 4k%)
.
s(s? — 4k%)
1

(s — ay?

n!

————, napositive integer
(S - a)n-l-l’ P

Kk
(s —a)? + k?

§—a

(s — a)? + k?




The Laplace Transform is a linear transform

...which means that you can move constants outside of the transform and take the Laplace
transforms of each term separately and add/subtract the results:

Z {3—-8sin 2t}
{3} — Z{8sin 2z}
3% {1} -8 {sin2s}

1
3—-8 2
S s'+4

An example

Usually, we'll find a Laplace transform by using the table. Let's do this one together:
Find the Laplace transform of f(f)=¢"—e™ +5



Laplace transforms of piece-wise defined functions

If we are given a piece-wise defined function which has different functions for different
parts of the t domain, then we have to go back to using the definition and computing the
integral by hand. Here is an example: f(t)

/() 2{2, >3

w®

[l

F(s) =Ie " (1) de

ie"‘ 0) dt + I (2) dt
0

= 0 +2 e dt

~ =0

2. 4
——Zlime* +=e*
SI—)oo S

= (Hl%.cﬁ’r (s>0)
§

Why are we learning about the Laplace Transform?

Because in the next section we are going to define the Inverse Laplace Transform and learn
how to take derivatives of Laplace transforms, and we will find that when you take the
derivative of a Laplace transform you get the same transform but multiplied by another s.

This means that if we have a differential equation, we will be able to take the Laplace
transform of it which will convert it into an algebraic equation. We will then be able to use
algebra to solve the differential equation, and in the next section we will define the Inverse
Laplace Transform which will allow us to transform the solution back into ¢.

Another reason has to do with modeling...when we imagine things like a spring/mass system
that is driven by a driving function, we've been using things like sinusoidal driving functions
which have continuous derivatives. But in real situation we often have abruptly changing driving
functions, like an 'impulse’ which is zero until £ = 0, then suddenly it applied. In this case, the
driving function would not have a continuous derivative, but we can use the Laplace transform
for piecewise functions to model the driving function and to solve the differential equation.



Additional info about the Laplace Transform (not officially part of this course)

The Laplace Transform has many other applications besides enabling the solution of
certain differential equations. Itis a generalized version of something called a Fourier
Transform, and these transforms have many other applications.

We will talk more about this later, but here we can talk about one interesting application of
the Laplace Transform.

2
s*+4

We found that the Laplace transform of g (7)=sin2t G (s)= Z {sin2}=

If we were to plot the original function versus time, t.

g_(t) g(t)=sin2¢

one cycle T 2r

A sine function goes through one period when its argument goes from0to 27:
0<2t<2xm
O<t<m

...which means its Period is 77 and there are two complete cycles in 27
...which means its Circular frequency, @, is 2.

Circular frequency is defined to be @ =27 f where [is the Frequency (cycles per second)

. _ 2
g(t)lenZt G(s)z X {sin2t}=—
s +4
g(1) Bif)=sinle F(s) is in the form of a fraction...are S;+4:O
there any values of s which would s°=-4

cause this function to be undefined?

+
/\ l/ ¢ Yes, but they are complex numbers, 2i and -2j. § =+2i

P S The numerical values here, 2 and -2 are called the
'roots' of the Laplace transform. Notice that the
roots are +/- the frequency of the sinusoidal
time function.

If we were to plot the values of the roots of the Complex Roots of F(s)

Laplace transform on a horizontal axis....

|
2 0 2

where energy

..and the looked at only the positive values, it gives a picture of X8t
where this frequency lies on the list of all possible frequencies,
or at what frequencies this signal contains energy.

2 (freq)



Additional info about the Laplace Transform (not officially part of this course)

Now if you had a time signal function which was made up of multiple different
frequencies added together...

g(t)=sin2¢ +sin3¢ + sin 5¢ ...and took the Laplace Transform:
G(s)= {sin2¢+sin3f+sin5¢}
2 3 5
2t 2. a7 2

t s+4 s°+9 s7+25

where energy
exists

The time signal is complicated (and | ] | > s
could represent, for example, a | ! f
: : g 3 5 (freq)
snippet of musical sound).

...the Laplace Transform roots allow us to separate out
the individual frequencies that made up the time signal.

TIME DOMAIN — FREQUENCY DOMAIN
g(1) Laplace Transform G(s)

Besides allowing us to solve DEs, the Laplace Transform allows us to take any time
varying signal and transform from the time domain to the frequency domain to see the
frequency content of the signal.

There are software algorithms which allow computationally efficient ways to perform the
Fourier Transform (a cousin of the Laplace Transform) called FFTs (Fast-Fourier
Transforms) to, for example, display the bass-treble frequency response of music playing,
or to transform singing to the frequency domain, correct the pitch, then transform back to
the time domain (auto-tune).



7.2 day 1: Inverse Laplace Transform
Inverse Laplace Transform

The Laplace Transform... f{f(t)} — F(S) — Te—s:f (r) dt

...converts a function of the variable t to a function of the variable s:
X {y(1)}=7(s)

...and we usually use a table to find the Y{(s) function for a given y(t) function...

The Inverse Laplace Transform reverses this procedure. It converts a function of
the variable s to a function of the variable t:

~1

Z {r(s)}=»(2)

...80 we just use the table in reverse.

f_l{ > kk2}=sinkt

P

...and we usually use a table to find the y(t) function for a given Y{(s) function...

Sometimes, we need to adjust the constant to find a match in the table

We sometimes need to make slight adjustments to a given Y{(s) function to make it
match the form in the table:

' ")

The Inverse Laplace Transform is a linear transform

Like the Laplace Transform, the Inverse Laplace Transform is a linear transform:
—1 —1 -
2 {K(s)th() =2 {K(s)}= £ {h(s))

...50 you can transform term by term separately:

Ex) ~1(3 1
<2t
s S5s-2




We often need to use partial fraction expansion

To split up numerators with multiple factors in order to match to the table, use partial fraction
expansion:

1
(-2)(s-1)

You are welcome to use online Partial Fraction Expansion calculators, such as this one:

https://www.symbolab.com/solver/partial-fractions-calculator
3

(There is a link to this on www.mrfelling.com in the 'math applets & resources' section)

One more example

Ex} _1(2 3 s+5
_7_+ =
Z {S s—4 52+25}




7.2 day 2: Inverse Laplace Transform of Derivatives,
using Laplace Transforms to solve Differential Equations
Laplace Transforms of derivatives

Differential Equations involve derivatives, so in order to explore how we can use
Laplace Transforms to help solve differential equations, we first must know how
Laplace Transforms of derivatives work.

The Laplace Transform of the derivative of a function can be found using the definition
and integrating by parts:

2 f’(t)}=Ie 11(d) di
u=e" dv=f'(1)dl
du=—se"dt v=f(t)
uv—jvdu
e f (1)~ [ £ (£)(-se " at)
[er ()] +SI6 " (1) dt

[er ()], +s Z{r (1}
(e"(m)f(oo))—(e .s(o)f(o))+s f{f(t)}
{r'(@0}=s2{1(1)}-1(0)

So the Laplace Transform of a derivative of a function is s times the Laplace
Transform of the original function, minus the initial condition of the function.




Similarly, for the Laplace Transform of a 2nd derivative of a function:
Z{f ()} =[e"s"(t)dt
0
u=e* dv=f"(t)dt
du=—se”dt v=f'(1)
Uy — Iv du

e f'(t )—If' (—se"“ dt)
[e"”f :I -t-sj Tf(¢)dt

[e" 7O +s {7}
(¢ 1 () ~(e s(0))+5 2{ (1)}
i/ (=5 2{/'(1)}-1'(0)
and substituting the previous resull...
(O =s]s Z{r(}-s(0)|-r(0)
Z{f" ()} =s* Z{/(1)}-5(0)-1'(0)

Summary of Laplace Transforms of derivatives

This pattern can be shown to continue, and in general:

X {0} =5"F (5)-5" £ (0) 5" £(0) -~ 7 (0)

Which can be summarized as following (using the capital letter for the Laplace Transform):
2 {0}=0
Z }—Y ‘
Z{y'(1)}=sY (5)-»(0)
2{y' (1)) - 2Y s) (0)-¥'(0)
Z{y" (1)} =57 (s)=5"(0)~9(0)-»(0)



Using Laplace Transforms to solve Differential Equations

The reason Laplace Transforms are so powerful in solving differential equations is that when
derivatives are transformed, the result is an algebraic equation, which means we can manipulate
things to solve the resulted transformed equation for Y{(s), then apply an inverse transform to
return to the t domain.

Solving Differential Equations with Laplace Transforms:

1) Take the Laplace Transform of both sides of the DE.
2) Solve algebraically for Y(s).

3) Find the solution y(t) by taking the Inverse Laplace Transform of both sides of the result.

Examples of solving differential equations using Laplace Transforms
Ex) 2y'+y=0 y(O):—3

(we could have used earlier techniques here...)



Examples of solving differential equations using Laplace Transforms
Ex) y"+2y"—y' —2y=sin3, y(0)=0, y'(0)=0, y"(0)=1



7.3 day 1: Laplace Transform Properties: shifting on s-axis
Properties turn out to be useful to solve more complicated DEs

The Laplace Transform has a number of properties which are very useful in solving more
complicated differential equations, especially ones in which the driving function on the
RHS is not smooth and continuous.

We'll see more later about exactly how this helps, but first we must learn and practice
using some of the properties of the Laplace Transform.

Laplace Transform / Inverse Laplace Transform with Shifting

The following properties can be shown to be true...

Z“ {e“’f(t)} =F(s—a)

Z {F(s—a)f=e"7(1)

Shifting in the s domain is equivalent to multiplying by an exponential in the f domain.

Examples

B 2 {e™ cos(41)} X {(333)}




Examples




- 25+5
Ex) I - -
Z {sz +6s+34}

Ex) y' -6y +9y=r¢" y(0)=2 »'(0)=17



7.3 day 2: The Unit Step Function
The Unit Step Function

The Laplace Transform is particularly useful for solving DEs when the RHS driving
function is piecewise defined, with abrupt changes in behavior.

We can model functions in time which change behavior abruptly by using the Unit Step
Function, which is defined as follows:

0, 0<t<a

uﬁ_a):{h (2a

u(t—a)

You can cause a function to start at a new time...

To shift a function so that it started at a new time, a, and is zero before, you multiply a
time-shifted version of it by the Unit Step Function:

/(1) f(t—a)
1 ! a f
u(t—a)
1 ———bs,




You can cause a function to stop at a specified time...

To cause a function to be applied for a specified time and then stop, you add a negative version of
the function to the original, but one which begins at the specified time. The positive and negative
versions of the function then sum to zero:

s()
1 1
a(."fa)
1 g
= 1
S(t)u(t=a)
o~
—f(t)u(t—a)

So when you add this to
the original function...

...you get...

-
e F
f(1)
\/\ll/"\ |
\/\T/‘-

You can combine these ideas to get shifted or non-shifted pieces of the function...
7(1)
I t
F(@)u(t-a)-f()u(t-b)

1




7.3 day 2: Laplace Transform Properties: shifting on t-axis
Laplace Transform / Inverse Laplace Transform: Shifting in s-axis

Earlier, we described the result of taking the Laplace transform of a function in the f-domain
which is multiplied by an exponential function...the result is the Laplace Transform of the

function, but shifted (translated) in the s-axis:

z {e“’f(t)} =F(s—a)
f_] {F(s —a)} =e“f (1)

Now that we've explored the Unit Step Function, we can define the Laplace Transform of a
function which is franslated in the t-axis:

. {f(t—a)u(t—a)} =e_‘“F(s)

z {e®F(s)} = f(t-a)u(t-a)

It turns out that the Laplace Transform of a -domain function shifted by a multiplied by the Unit
Step Function for a is the Laplace Transform of the function but multiplied by an exponential

function in s.

It is this property which will allow us to take the Laplace Transform of RHS driving functions
which are piecewise defined or shifted in time in order to solve differential equations.

Other useful Laplace Transform functions

The definitions of these Laplace Transforms can be used to show the following additional
properties are also true, which are useful in solving problems...

Sometimes, we will need to take the Laplace Transform of just a Unit Step Function without any
additional function multiplied, which is:

—as

f{u(r~a]}:e

§

Sometimes, we will need to take the Laplace Transform of something where the function is not
time-shifted but the Unit Step Function is time-shifted. In these cases, the following is useful:

L {g(t)u(t—a)} =g f{g(r+a)}

It is easiest to understand these properties by looking at examples showing how they are used...



Laplace Transform examples

Ex) Find 2 {e*u(r-2)}

1 0<t<4

Ex)Find 2Z{f ()} where f(r)=10 4<r<5
1 125

Ex) Find 2 {sin tu(t— 2%)}



Inverse Laplace Transform example

il
——§
2

~1
Ex) Find 2 4
s

Solving DEs with Laplace Transforms

The real beauty of all this is it gives us the ability to solve DEs with RHS functions with
abrupt changes in behavior. We will take the Laplace Transform of both sides (using our
new rules to handle the RHS), then solve algebraically for Y(s), and take the Inverse
Laplace Transform of both sides to find the solution:

Ex)Solve Y’ +y=f(t)  where f(t):{_ll 0<r<l

1>1 »(0)=0




Another solving DE example

Ex)Solve y"+4y=costu(t—z) y(0)=0

¥ (0)=1




7.4: Derivatives of a Transform
Summary of Laplace Transforms of derivatives

Earlier we learned that Laplace Transform of a derivative of a function in t...

2£{0)=0
Z{r(0)}=1(s)

Z{y (1)} =57 (s)-(0)

Z{y"(0)}=5"Y (s)-(0)-y'(0)

Z{y" (1)} =5Y (s)-5"»(0)-5'(0) - »(0)

2 (=5 (5) 57 (0)-5"7(0) .~ (0

...results in multiplying the s side function by multiples of s (along with some initial conditions).

What would happen if we took derivatives on the s side?
Derivatives of a Transform

The following property can be shown to be true:
. nd
2 {7 ()= (1) 2[F ()]

A derivative of a Laplace transform function is equivalent to the Laplace transform of the
original function, but multiplied by a power of t (the power equals the degree of the derivative).

This expands functions we can find Laplace or Inverse Laplace Transforms for in the RHS
function.

Ex) Find {re3’} Ex)Find £ {te™ cos3t



This is also helpful when we have to take Inverse Laplace Transform not in table

Ex) Find 2"1 8
(s2 +16)2

What about this one?

Ex) Find f1 : E
(SZ-+-])
We wouldn't be able to easily integrate this to see if it was a derivative of a table structure.
But...
] 1 1 d s
Z {sint—1tcost} = = = | —[ ] » 1 =
{ } .S'2+1 ( )dS' S2+l z1 ﬁ =~;—r1 "2—2"5 =%(Sint—tcost)
1y 066 (s7+1) (5 +1)
s*+1 (s2 -a-l);1
1 ast4l-2s
s (s2+1)
1 —s5*+1

T ()

- 1(s2 +1) g

7(.5'2+12)+(52+1)2
2

(.5'2+1)2

It isn't intuitive that we would try this, so this is why we have an extended Laplace Table...



Extended Laplace Transform Table

fay L) = F(s)
1
1.1 -
s
1
2.1 5—2
n!
RN L a positive integer
s
5. 12 Va
* 2s3/2
N I'la + 1)
6. 1 T > -1
: k
7. sin kt
s 2+ K
s
8. cos kt TR
2k?
2
9. sin“ kt R
2 2
) s+ 2k
10. cos” kt SM—(SZ Yoy
|
11. &%
s—a
k
12. sinh kt ERpT:
13. cosh kt ;—2-{--’-(5
2k2
14. sinh’kt e
s s(s? — 4k?)
s — 22
15. hZkt. _—
S s(s? — 4k
1
16. re™
¢ (s —a)
n!
17. "™ m, n a positive integer
- k
18. ¢4 sin kt m
s—a
19. e 'CQS kt m




38.

Jo(kt)

f(n L{f@)}) = Fs)
20. e sinh k¢ R S
. (S _ a)Z — k2
g5 T [Seni TR
21. e* cosh kt T—aP =
22 | k A
. tsin Kkt (52 s kz)z
’ 2 — 12
23. tcos kt m
24. sinkt + k kt Lsz_
. SIn Kt f cos (52 e kz)z
) 2K
25. sin kt — kt cos kt —(52 LR
) 2ks
26. tsinh kt (Sz_—kz)z
S e ol
. tcoshkt (52 _ kz)z
gl — bt 1
28. a—b (s —a)(s — b)
5. ae® — be” s ¢
a—b (s —a)ts — b)
kz
30. 1 — cos kt m_}
o T _k
. Kt sin Kt 52(52 + kl)
2 a sin bt — b sin at ______1____
T ab(a® - b)) (s* + a®)(s* + b
3 cos bt — cos at s
' a* — b (52 + a®)(s* + b?)
£, it frii _2Ks
. sin kt sin! S+ ap
e i k(s? + 2K%)
. sin kt cos &+ 4K
36 kt sinh kt —k(s2 )
. cos kt sin &+ 4K
S3
37. cos kt cosh kt Pt A
1

Vst + i2




f@) L{f(®)} = F(s)
2 e — e =2
t s—b
40. 2(1 — cos kf) lnsz + k2
t s*
ii. 2(1 — cosh k#) lnsz —2 K2
t s
>42. oL arctan (2)
t s
sin at cos bt 1 a+ 1 - b
43, ———— —arc + — arctan
t 2 s
1 e—a%
44‘ —a*l4t
V' Vs
. a
45. —atl4t —aVs
5 as® 4
—-aVs
a e
46. erfc (2\/5) : .
—aVs
oo (L) e
4’7.2\/;e aerfe( > =
48. et P erfc (b\/r e i) M 2o
. 24 Vs(Vs + b)
be aVs
. —eab bt L L) L bR
49, —e%¢ erfc(b\/f i s(\/§+ b)
a
+ ——
: erfc(z \/:)
50. e“'f(1) F(s — a)
51. UA¢ — a) e
)
52. f(r — @)Ut — a) e “F(s)
53. g(t)@l(t —a) e “Llgt + a)}
. 54 F90) AP = 4 00) ~ - - <= pAD(G)
dﬂ
55. " f(1) (=1) — F(s)
ds®
56. f f(Dg(t — mdr F(s)G(s)
0
57. (1) 1
58. 6(t — tp) e sh




A solving DE example...

Ex) Solve y"+y=7(¢t) »(0)=1 »'(0)=0

1 0<t<Z
where f(t)= 2

2 T
sint  t=>—
2



7.5: The Dirac Delta Function
Is the Laplace Transform of any function=1?
The simplest Laplace Transform shown in the regular table is

2 ()1

s

Is there any function whose Laplace Transform would be simpler than 1/s, for example 17

The answer is yes, but it isn't a normal function.

Unit Impulse

So far we've been able to use things like the Unit Step Function to allow for driving functions for
differential equations which are abruptly turned on or off:

...but these function, once on, are defined (are 'on') for some period of time.

What if we wanted to model something like the vibrations of an object if it is struck by an
another object? Where there is a driving function but it acts only for a brief instant in
time?

We could define such a function, which is called the Unit Impulse Function like this:

0, 0<t<ty—a
1
8,(t-1,)= = t,—a<t<i,+a

0 (2t +a

| lv—a ty t+a

Where the height is defined such that the area under the curve is 1:

Té‘a(r—z‘o)dt—l
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The Dirac Delta Function

In practice, we instead work with another type of unit impulse, a 'function’ that approximates the
Unit Impulse Function but is defined by a limit:
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As a decreases, the height of the unit impulse function increase to match so that the

area under the function curve remains 1. This means that in the limit, the height is
approaching infinity as the width is approaching zero:
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...and this special unit impulse is called the Dirac Delta Function.

We can use this function to represent a driving function whose effect is felt over an
infinitesimally small period of time, for example if an object is 'struck’ by another object.
Laplace Transform of the Dirac Delta Function

It can be shown (separate PDF available on website) that the Laplace Transform of
the Dirac Delta Function is:
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(Like the Laplace Transform of the Unit Step Function, but without dividing by s)

Andif £, =0:
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An example...
solve y'+y=45(t-27) y(0)=1 »'(0)=0

This could represent a undamped mass-spring system which has the mass initially displaced
and released, but with no initial velocity, which causes some oscillation at the natural
frequency, but then at a later time, the mass is 'struck’' by a hammer.
Using the new definition to take the Laplace Transform of the RHS:
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y(t)=cost+4sin(t—27)u(t—2x)
Since sin(7—27)=sin(7)

y(t)=cost+4sin(t)u(t—27)

The mass initially oscillates at the natural frequency due to the initial displacement, and then when

the mass is struck and new oscillation is started, also at the natural frequency by the impulse strike
beginning at the point where the mass was when struck.
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