Differential Equations — Lesson Notes — Chapter 4: Higher Order DEs

4 1: Higher-order linear DEs

In this section, we first identify some important properties and theorems we'll need
as we learn various methods in the rest of the chapter for finding solutions to
different forms of higher-order differential equations.

Initial Value Problems (IVP) vs Boundary Value Problems (BVP)

For first-order DEs, we know that an Initial Value Problem is one where
in addition to the DE we also specify the value of y and y' at a single x...

r 2
For the DE: y+2xy° =0
We could find that the family of = 1
solutions (general solution) is: 2
: : 3 4
But if we are also given the y| ===
initial condition: 9] 5
We can solve for the constant: C=-1
1
...to find the particular solution: F= 21

Also, there was a theorem that guaranteed that if certain conditions were met, then this
solution would be unigue over an interval.

For higher-order DEs, sometimes general solutions will involve only a single constant...
For the DE: Xy =2xy'+2y=6

We could find that the family of

= 2
solutions (general solution) is: y=Cx"+x+3

But if we are also given the 0Y=3 and V' (0)=1
initial condition: y( ) y( )

...it can be shown that for this initial condition, all values of the constant C make the
DE true, so there are many solutions (there is no unique particular solution).

This is still called an Initial Value Problem (IVP) because we are given conditions for
all the derivatives in the problem but for only one value of x.

It turns out that there will only be a unique solution over an interval where the
coefficients of all the derivative terms and the right side function are non-zero.

In this example:  x*, —2x, 2, 6 these coefficient do go to zero at x = 0,

so there is no unigue solution over any interval which contains x = 0.



But for higher-order DEs, most often the general solution will contain multiple constants
For the DE: y'+16y =0

We could find that the family of _ .
solutions (general solution) is: Y= C‘ COS(4x) +C,sin (4x)

To find a particular solution, often we are given the values of y and derivatives of y at

multiple values of x...
T

...and then the problem is called a Boundary Value Problem (BVP), instead of an Initial
Value Problem.

The reason this distinction is important is that Boundary Value Problems may have many,
one, or no solutions.

(We won't be doing a lot with this in this course, but | wanted to mention it for completeness)

Homogeneous vs. Non-homogeneous DEs

One thing we will refer to frequently is whether or not a differential equation is

homogeneous or non-homogeneous. This is very straightforward: A linear DE is
homogeneous if the right-hand-side function is zero:

()22 +a, ()DL v +a ()Y ra (=8

Non-homogeneous DE: (x2 )y" + (Sx)y' ~5y=2x*

corresponding homogeneous DE: (x?' ) y" F (Sx)y' -3y = 0

Superposition Principle

It can be shown that for a homogeneous linear differential equation, if you can find multiple
solutions to the DE, then the linear combination of these solutions is also a solution:

If y, ¥,,---» ¥, are solutions of alinear homogeneous differential equation,

then y = ¢y, +c,y, +...+ ¢, y, is also a solution.



Checking for Linear Dependence/lndependence - the Wronskian

If we have a set of functions that are each solutions to a differential equation (and which

could be linearly combined to also form a solution), it can be shown that the functions in this
set will be linearly independent of one another.

Linearly independent means that no function can be formed by multiplying any other function
by a constant.

As an analogy, this is similar to the idea of a system of equations.
Consider this system of two linear equations: ’

2x+3y =5

X+ y=2 !

This system has a unique solution - there is
an intersection, because the lines are not
parallel.

N

Other ways to express this idea: you can't find a constant to multiply the 2nd equation by
that would turn it into the first equation:

2(x+y)=2(4)

2x+2y =4 is not the same function as 2x+3y =35

Also, if you solved this system using Cramer's rule, all the determinants are non-zero:
5 3 2 5

2 1‘_5—6_—1_ 1 2‘_4—5_—1_

2 3 2-3 -1 2 3 2-3 a1

‘1 1‘ ‘1 1‘

Now consider this system:
2x+3y =S5

6x+9y =15 \

This system does not have a unique solution
because the lines are coincident.

Other ways to express this idea: you can find a constant to multiply the 1st equation by that
would turn it into the first equation:

3(2x+3y)=3(5)
6x+9y =15 is the same function as 2x+3y =5

Also, if you solved this system using Cramer's rule, all the determinants are non-zero:

5 3 25
_‘15 9‘_45—45_0 _‘6 15‘_30—30_0
23 18 0 T2 3] 18-18 0
‘6 9 6 9

We don't have unigue solutions when the determinant associated with the coefficients of the
system have a zero determinant (and, interestingly, these coefficients happen to be partial
derivatives of their respective terms).



Checking for Linear Dependence/lndependence - the Wronskian

For a set of equations (or solutions to a differential equation) to be linearly independent,
there has to exist no set of constants that would allow one function to be transformed
into another other function in the set. When considering more than 2 functions, this is
equivalent to stating the following:

A set of functions f, (x), f2 (x) fn (x) is linearly dependent on an interval /
if there exists constants ¢, C,....... ¢, not all zero, such that:

n

afi(x)+efy (%) +.c, S, () =0

for every x in the interval. If the set of function is not linearly dependent upon the interval,
then the set of functions is linearly independent.

The good news is that we don't have to adopt a 'trial-and-error' approach trying to find
such constants, because, similar to the determinant's behavior with Cramer's Rule for
linear systems, there is a determinant we can use to quickly determine if a set of
functions is linearly independent. This determinant is called the Wronskian.

Suppose each of the functions f (x), 5 (x) o], (x) possesses at least n - 1 derivatives.

The Wronskian of the functions is defined to be:

i B .- £
W(£(x), £o(x) 1o (x)) = f‘ f?- f
£E0 pey e

If the Wronskian of a set of functions is non-zero, the set of functions is linearly
independent.




Let's see how the Wronskian works using the two simple linear systems we considered:

2x+3y=5
x+ y=2
2 5
Y =——X+—
fiy=-3743
Liy=2-x

: (—§x+§) (2-x)

When the Wronskian is non-zero, it means the set of functions is linearly independent.

2x+3y =5
6x+9y =15

(339

12 30 12 30

x +—
27 27 2Zix 27
=0

On the right, the Wronskian is zero, meaning this set of functions is linearly dependent.

The Wronskian works to determine independence for any number and any form of functions:

Ex) Determine whether the set of functions is linearly independent on the interval (—00, 00)

fi(x)=0, f,(x)=x, fi(x)=¢



Ex) Determine whether the set of functions is linearly independent on the interval (0, oo)

SLilx)= e? fo(x)= xe?

Solution to linear homogenous differential equations

Any set ¥y, V,,...}, of n linearly independent solutions of a linear homogeneous equation
on an interval [ is called a fundamental set of solutions for the differential equation and

such a fundamental set of solutions does exist over the interval.

Let ¥, ¥,,...), be afundamental set of solutions of a homogeneous linear nth-order

differential equation on an interval /. Then the general solution of the differential equation
on the interval is:

Yy=an» (x)+czyz (x)+"'+cnyn (x)

where ¢;, i =1,2,.....,n are arbitrary constants.

Our textbook doesn't include a proof of this, but does describe an interesting analogy...

The underlying reason why this works is similar to the way a vector in 3D space can always

be expressed as a linear combination of a set of other vectors, as long as those vectors are
independent (orthogonal):

So...solutions to homogeneous equations will involve adding together multiple functions, each

multiplied by a constant. (Setting these constants differently will produce different particular
solutions for particular initial values or boundary conditions).



Solution to linear non-homogenous differential equations

The non-homogeneous, linear differential equation...

dn dn--l
a,(x) 2 4, () 2t a() D () y =g (x)

has a corresponding homogeneous differential equation with right side = 0...
dy d'y dy
a (x +a (x +..+a{x)—+ag(x)y=0
ﬂ( )dt" l‘?'"l( )drn—l l( )dt ae( )y

If the general solution of the homogeneous DE is

y=cy(x)+e,(x)+..+c,y,(x)
where ¢;, i =1,2,.....,n are arbitrary constants.

then we call the solution of the homogeneous DE the complementary function, V.

Let ¥, be any function which satisfies the non-homogeneous differential equation, then

YV, is called a particular solution. Over the interval, the general solution of the
non-homogenous differential equationis:  y =y +y,

This means that when we solve a non-homogeneous DE, first we will solve the associated
homogeneous DE and then find any particular solution of the non-homogeneous DE. The general
solution will be linear combination (by superposition) of these two solutions.

(We're not going to do non-homogenous yet in homework, but want to lay the groundwork here)

Ex) Verify that the given functions form a fundamental set of solutions of the differential
equation in the indicated interval, then form the general solution.
1 1

4y"—4y'+y=0 f,(x)=e?, f;(x)=xe£x (—o0, o)

First, verify the first function is a solution tc  Next, verify the second function is a solution to the DE...
1 1

y=e y=xe*
B (L e ()= L et
e = 2 =x| —e? |+e =—xe? +e
= 2e y > ( )
1 lx lx lx x
y":l 2" y"'z1 % 132 +e? (1) +lez =l.7ce2 +
4 20 \2 2 4 2
A e 1 L L
dy -4y +p=0 = —xe” +e
1 i 1 L : ) 2
4 Zez -4 582 +e? 4y"—4y' +y=0
I 23 Lk I 3 L i
ks L. Xy 4| —xe? +e* |(—4| —xe® +e? |+xe?
e? —2e? +e? 4 2
0 - 0 1 1 1 1 1

xe? +4e* —2xe* —4e? + xe?
0=0



Now that we know these functions are both solutions to the DE, a second-order DE should have 2 functions
for a fundamental solution set, so verify that these two functions are linearly independent and form such a set
by using the Wronskian:

L LI
e’ xe?
W= 1 1 1
1 . 1 —X —X o
—e? —xe? +e? W=e
o 2 The exponential function has an asymptote at y=
0 so it is never zero, and therefore these two
( L L L Ly 1 Ly solution functions form a fundamental solution
= | &2 —xe? +e? |—| xe? —e? set for the differential equation over the interval
¢ N2 2 ) (~ow)
11 11 1.1
—X —X —X
=—xe? e* +e? e? ——xe? é?
2
1 1

=e" #0

Finally, we can use the superposition principle to write the solution for this differential equation:

! I
—X —X
a2 2
y=Ce? +C,xe



4 2. Reduction of Order

For a 2nd order linear DE, if we know one solutions, we use find a 2nd solution

If we have a linear 2nd-order DE and we happen to know one solution, then we can
use this solution and a procedure called 'reduction of order' to reduce the 2nd-

order DE to a 1st-order DE, and then use our 1st-order techniques to solve this new
DE to obtain the 2nd solution to the original DE.

Reduction of Order:

1) Given a 2nd-order DE and known solution y¢, postulate a currently unknown
function, u(x) such that:

¥ (%) =u(x)n (%)

2) Take the first and second derivatives of this new y, function (which will require
product rule multiple times).

3) Plug y» and its derivatives into the original 2nd-order DE. This will result in a new

DE with all the x's changes to u's, and it will turn out that the non-derivative u terms
will cancel out.

4) Define w = u' and substitute, producing a new first-order DE. Use known
technigues to solve this for w, which is u'.

5) Integrate u'to find u, then form the second solution: ), (x) = u(x] Y (x)
An example...

The indicated function is a solution of the given differential equation. Use reduction of order to find a
second solution. 1

6y +y -y=0; y=¢€



If the integration of the resulting function is too hard, you can use a formula instead

Because the steps are fairly procedural, our textbook develops a formula you can also use:

If you divide by the 2nd derivative coefficient to put the given DE in standard form:

V'+P(x)y'+0(x)y=0

Then the 2nd solution can be found with this equation:

e—_[P(x]dr
¥, (%)= (x)j

—2dx
(1 (%))

(I suggest only using this if you are having difficulty with the normal procedure)



4.3: Solving homogeneous linear DEs with constant coefficients
For a 2nd order linear DE, if we know one solutions, we use find a 2nd solution

For linear homogeneous equations of any order, if all coefficients are constants, we
can use this section's method to solve. An example of such a DE would be:

2y"-3y"+y -4y =0

The method presented consists of representing the DE with a corresponding algebra
equation, solution for the zeros of the algebra equation, and then using these result in
some standard forms for solutions.

(The procedure is presented here without derivation. If you are interested in the
background about why this works, there is a separate PDF with more information.)

Procedure for solving higher-order homogeneous linear DEs with constant coefficients

This procedures works for any order DE, but we will use a 2nd-order DE for illustration.

1) Given a DE, find its auxiliary equation:

DE: ay"+by'+cy=0
auxiliary equation: am’ +bm+c=0

2) Solve the auxiliary equation by factoring or quadratic formula or for higher orders by guessing a zero
and using synthetic division to check and to factor.

3) This will result in same combination of m values which are zeros (roots) of the auxiliary
equation, and will in occur in three possible ways:

a) Single (distinct) real roots, and for each you add to the solution a term of the form:
C.e™
b) Repeated real roots (multiplicity > 1). For the first copy add a term of the form Ck e™
and for each 'copy' add another term by with a additional x.

. . . 3
For example, if your factored aux equation is (m - 2) =0
...you would add the following to the solution:  y = C,e** + C,xe’* + C,x’e>*

c) Complex roots (which always occur in complex-conjugate pairs).

If the m values are written in the form: m = ¢ + fﬂ
for each pair, add to the solution:

ax oax s
C,e” cos Bx+ C,e” sin fBx



Examples...

Find the general solution for  y" —36y =0

Find the general solution for y" - 10_}" + 25_}’ =0

Find the general solution for 2" —3y'+4y =0



Find the general solution for y" 5 o 9y =0

Find the general solution for y’” + 3_];" - 4_];' —-12y=0



4 4: Undetermined Coefficients (solving non-homogeneous DEs)

Solving a DE with non-zero right side (nonhomogeneous)

In order to solve nonhomogeneous DEs, we will use the superposition principle that if
we can first solve the corresponding homogeneous DE and then find any particular
solution which includes the right hand side, then the complete general solution will be:

where Yy, is the solution to the corresponding homogeneous DE
and y, is any particular solution of the nonhomogenous DE

y=y.*y,

The method of undetermined coefficients is one method we can use to find this

solution which works with the original DE is linear and has only constant coefficients,
and for which the right-hand-side function is a linear combination of only polynomials,
exponential, and sin or cos function terms.

So we could use this method for DEs like these...

29"+ y" =2y +3y = 4x%e* —2008(335)

2y"+y" -2y +3y = 20x* + x —4e™ + 4 cos (3x)

...but not these...

2y"+y"-2y'+3y=Inx

2y"’+y'—2y'+3y:l+2tanx
x

Solving a DE with non-zero right side (nonhomogeneous)

The way we find the particular solution, y,, is essentially to guess its form (with its
own associated constants) and then take derivatives, plug into the original DE and
establish the constants. If we are able to establish constants which work, then the y;
was valid. We use the following table of forms to make the initial guess for the form

of yp.
g(x) Formof y,
1. 1 (any constant) A
2. . ax 4T Ax + B
3. 3x2—2 Ax2+Bx+C
4. 3 —x+1 Ax® + Bx2+ Cx+ E
5. sin 4x A cos 4x +°B sin 4x
6. cos4x A cos 4x + B sin 4x
Ae’*
8. (9x — 2)e’* (Ax + B)e**
9, x%e3* (Ax? + Bx + C)e*
10. &% sin 4x Ae3* cos 4x + Be** sin 4x
11. 5x%sin 4x (Ax2 + Bx + C) cos 4x + (Ex* + Fx + G) sin 4x
12. xe3* cos 4x (Ax + B)e**cos 4x + (Cx + E)e’* sin 4x




Method of Undetermined Coefficients Procedure
1) Find the solution y. of the corresponding homogeneous DE.

2) Select a form from the table for y, which most closely matches the right-hand-side.

2a) If the form matches any term in the y; solution, then multiply the selected y, by x"
where n is the smallest integer which allows the term to no longer match a term in ¥

3) Take all derivatives of the y,, solution required to plug into the original DE.
4) Plug y, and its derivatives into the original DE and solve for the A,B, etc. constants.

5) Solve the remaining equation as a system for the constants A, B, etc. and plug in to
get yo.

6) Form the general solution by combining: ¥ =y, + Yo
(this will still contain constants C,4, C,, etc.)
Initial Value Problem?
7) Take derivatives of the complete general solution, and plug in the initial conditions to

solve for C4, C,, etc. to find the solution for the initial conditions.

Examples...

1
y"—y'+zy=3x+l



Examples...

] L
"—y'+—y=3+¢€?
Y =¥ 4J’

1
y’"—y“l-%y=3+e§r2

»(0)

14,



Examples...

y"—6y" =3—-cosx



4.6: Variation of Parameters

Solving linear non-homogeneous DEs with non-constant coefficients

If we have a non-homogeneous DE like this...
2y +x)+y=x

...we are unable to use the method of undetermined coefficients, because that
procedure requires that all coefficients of the derivatives be constants.

In cases like these, we can try the method of Variation of Parameters.

(The procedure is described here, but if you want to see the derivation of it (it is
interesting), I've published a separate PDF with the details.)

Method of Variation of Parameters
1) Find the solution of the corresponding homogeneous DE Y. =Cy, +C,y,

2) Divide by the leading coefficient of the highest order derivative to put in standard form.
This may give a new right-hand-side, which we'll call f(x)

3) Postulate a particular solution of the form: Y, =u,y, +u,),

where ys and y, are the same forms found in the homogeneous solution
and u; and u, are new functions of x (not necessarily constants).

4) Use the following fractions of determinants to solve for the derivatives of the u

functions: ‘ 0 ¥, » 0
L s

N ¥ B ST

2 i ¥

5) Integrate the derivatives of the u functions to find the functions:
u,:-[u{ dx, uZ:ju;dx

6) Form the particular solution... YV, =u,y, +u,),

and then the complete general solution...

Y=Yc+Yp=Cn+Cy, +uy +u,y,



Method of Variation of Parameters

Pros...

¢ Can solve DEs with non-constant coefficients.

e You don't have to worry about the 'absorption' issue.

e Can solve everything we've already learned to solve, but...
Cons...

e Usually takes longer than earlier methods.

e The integrals at the end can be really difficult to compute.

Examples...

y'+y=tanx



Examples...



Examples...

X

y' =2y +y= =
1+ x?



Examples...



4.7: Cauchy—EuIer Equations

Variation of parameters doesn’t always work

The Variation of Parameters method in the last section always works for linear differential
equations with constant coefficients, but in general doesn't work if the coefficients are
variable functions.

We will continue studying methods later in the course for handling more complicated
cases, but there is one class of differential equations which appears frequently and has
two methods we can use to solve now. These functions are called Cauchy-Euler
equations and have the form:

matches

()
ang-l-bx%-l-cy:g(x)

The coefficients of each term is a function with a constant and an x raised to the power
that matches that term's derivative order.

For DEs in this form, we have two different (related) procedures we can use to solve the
complementary solution for the corresponding homogeneous DE. (Then we can use
methods such as variation of parameters or undetermined coefficients to find the particular
solution).

(The derivation of these procedure is available in a separate PDF)

Solving Cauchy-Euler equations - method 1
1) Find the Cauchy-Euler differential equation's auxiliary equation:

DE:  ax’y"+bxy +cy=0
auxiliary equation: ~ am’ +(b—a)m+c =0
2) Solve the auxiliary equation by factoring or quadratic formula.

3) This will result in some combination of m values which are zeros (roots) of the auxiliary
equation, and will in occur in three possible ways:

a) Two distinct, real roots:  y = Cx™ + C,x™
(note: it is x™, not e™ as in the previous procedure).

b) One real root, repeated: y=Cx" +C,x" Inx

c) Complex-conjugate roots: y = Clxa cos (ﬂln x) + sza sin (ﬂ In JC)



Solving Cauchy-Euler equations - method 2

The 2nd method involves substituting x = ¢’ which produces a new DE for y with respect to f as the
independent variable. The result of doing this for a Cauchy-Euler DE always produces a linear DE with

constant coefficients, which can then be solved using earlier methods.
1) Perform the following substitutions into the Cauchy-Euler differential equation:
DE:  ax’y"+bxy'+cy=0

Substitute: x=¢'

f=Inx
, _ldy
JV—Jnc-sibf
_1(dy d
Y 2\ @ &

2) The resulting equation will have constant coefficients.
Solve this equation using previous methods.

3) Re-substitute f = Inx to express the solution using x as the independent variable.

Examples...

x*y"—2xy'—4y=0



Examples...

x*y"—3xy' +3y=2x"e"



Examples...

¥’y —xy'+y=Inx



2nd-order linear, have one solution and need another?

a(x)y"+b(x)y +c(x)y=0 Higher-Order DE procedures

for solving homogeneous DEs

yes no
Reduction of Order  homogeneous with constant coefficients?
¥, (x)=u(x)(x) ay"+by'+cy=0
(take derivatives and substitute
w=u', solve resulting 1st-order /\
DE, then integrate to get u). yes no

use auxiliary equation  2nd-order, Cauchy-Euler form?
am’ +bm+c=0

single root:  y=Ce™ -
repeated roots: ¥ = Ce™ +C,xe™ + Cyx°e™... We'll need methods
complex pairs: ¥ = Ce” cos Sx + C,e*" sin Sx yes from future chapters...

use auxiliary equation
2
am +(b—a m+c¢=0

distinct roots: ¥ = Cx™ + Cyx™
repeated roots: ¥ =Cx" + Cx" Inx
complex pairs: ¥ =C,x“ cos(BIn x)+C,x*sin(SIn x)

Check if solutions are Linearly Independent (form a fundamental solution set) using Wronskian:

A

A o f) Linearly Independent if
W(ﬁ (x), fz (x) f:r (x)) = 1 i Wronskian is non-zero:

fl(ﬂ—l) fz{"—l) f("—l)
Higher-Order DE procedures for finding V, from ),

Linear non-homogeneous DE with constant coefficients?

ay" +by +cy=g(x)

(can be higher order too)

/'/\

yes o no
Undetermined Coefficients Variation of Parameters
use table to find form... assume terms have same form as

homogeneous solution multiplied by u functions:

glx) Formof y, . y
Ye=Cn+Cy,

1. 1 (any constant) A

L. 4T Ax+ B yf’:u](x)yl'l'uz(x)yz g(x}
3. 3¢ =2 A +Bx+C Divide by leading termto get /' (x)=

4 P-x+1 A + B + Cx+ E a(x)
5. sin 4x A cos 4x +°B sin 4x . . . . " ;

6. cos 4x ; Acoséx + B sin 4x then find u function derivatives with Cramer's rule:
T f!n ﬂ“_,h 0 yz yi 0

8. (9x — 2)e** (Ax + B)e™ : ;

9, x2ed% (Ax? + Bx + C)e™ P f(x} Va ' M f(x)
10, ¢ sin 4x Ae** cos 4x + Be* sin dx - » =
11. 5¢% sin 4x (Ax? + Br+ C)cos dx + (Ex* + Fx + G) sin éx N2 NN
12. xe™ cos dx (Ax + B)e™ cos dx + (Cx + E)e™ sin dx DA - N P

...take derivatives, plug into DE and solve for then integrate to find u functions, and solution:
constants, then: ", = Iu; dx, u, = Iu; i
= + Vp —
Y=Yt Vs Yp =ty ti,),

Y=Yct+¥p



