Differential Equations — Lesson Notes - Chapters 1 and 2: First Order DEs

1.1: Introduction, terminology
What is a differential equation?

A differential eduation is an equation (contains an equals sign which states
the two sides are equal) but where at least one term contains a derivative.
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A solution to a differential equation is itself an equation - an equation ‘j — [(OPz +
which compietely satisfies the originat differential equation.
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To verify if an equation is a solution to given differential eqlzataon you first df ! ”)( )

take the required derivatives, and then plug everything in; ot
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There are many different symbols for writing a derivative, so we need to be
aware of all notations:

2 . 2
Leibnitz notation: dy d’y 0z

e e -

at  d* &
Prime notation: ' 3" " ¥

Subscript notation
(for partial derivatives): f;; fxy

Newtoh's dot notation:  * * e
s dot notation: ¥ ¥

- Terminology

This course is mainly about learning different methods of finding the
~ solutions to given differential equations (although we will also investigate
applications of differential equations in.the real world).

Various techniques exist for finding the solutions fo differential equations,

and these techniques vary dependlng upon the specific form of the -
differential equation. :

So we 'classify’ differential equations into different groups and throughout
the course will be learning different techniques that apply to different
classifications of DEs in order to obtain solutions.



Terminology - classification by 'type’

If all the derivatives are ordinary (not pariial) derivatives, the equataon is called an

Ordinary Differential Equation (ODE):
An ODE can contain more than one
dependent varia\l‘aie...
dy Y. 4 e A
Sy =gt 3% = o e Qo §x 3
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.,.bdt only one independent variable -

If there is more than one independent variable and any of the derivatives are partial
derivatives, the equation is called a Partial Differential Equation (PDE):
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(Partial Differential Equations can be extremely difficult to solve and are beyond the
scope of this course - we will focus only on Ordinary Differential Equations).

Terminology - classification by "order’

-The order of the differential equation is the order of the highest derivative that
appears in the equation

|

& dy

L2yt at=x -4 This is a 2nd-order DE
dx dx’

V' +2y—y' +4y"=3 This is a 3rd-order DE

g

3 .
d’y + 5(@“) ~4y=¢* This is a 2nd-order DE

ax’ dx

f

{this Is a 1st-order term being cubed)

Terminology - dependent vs. independent variables

. The last way we classify DEs is by linearity, but to do so we must first identify the
independent and dependent variables. For an ODE, there is only one independent
variable (although there can be more than one dependent variable):

(1,_ y) y'+2y=¢"\ Dependent variable: y (because of the y prime)
. " independent variable: X

dy . ¥ Dependent variable:
—fginy=e ependent variable: y
dx:

Independent variable: x {in denominator of derivative)

d3
x3 = y Dependent varable: x
independent variable: y (in denominatgr of derivativa)

t

Dependeant variable: x {bacause of X prime}
y 3 Yl e
3e +(y +y )x =3 Independent varable: y



Terminology - classification by ‘linearity’

For an n-th order ODE where y is the dependent and x the tndependent variable, the
DE is linear if it can be written in this form...

d}l
an(x)wé%+ » (x) 5 £, . A+ ay(x) y+a,(x)ay+a‘,(x)y g(x)
This means that to be lihear...

* The dependent variable y and all its denvatwe v,y

. are all of first degree
(the power of each termis 1).

» The coefficients of all the terms containing the dependent variable and its

derivatives (y,y'y"...) depend at most on the independent variable - meaning,
they can be constants or functions of x, but cannot be functions of y.

» The term which contains no dependent variabie, y, or derivatives can be any
function of x.

Examples of Linear DEs..,

dy ~3 y=0 This common form is a linear first-order DE

dy

23y = g* Still linear, even with the non-linear exponential because this is not a term
containing the dependent variable.

2y" -3y +y=5 This common form is a linear second-order DE

~ fﬁx + xfé'. ~5y=¢"  Okay to have a coefficient that is a function instead of a constant as
A ed long as its a function of the Independent variable only.

3¢+ ( y+ y3)x' =3 This is still inear because the independent variable here is v.
(y +y3)x'm(3—-3e")

Examples of Nonlinear DEs...

(1-y)y'+2y=¢" derivative coefficient is a function of the dependent variable

2
w-%i +siny=¢&’ nan-linear terms in the dependent variable
3 x )
,&;3_ +x° =2y nor-linear term in the dependent variable (the 2y is okay}

v AW here, the dependent variable is x, so the x+x is a function in the
3¢ +(x+ 2" )a' =3 dependent variable - not allowed for linear

\



Solutions, solution intervals, and solution curves

Throughout the course, we'll learn how to obtain the solutions fora given DE, but here we may
just be asked to verify that a solution provided is indeed a solution. Just take the derivatives of
the sulution and plug into the given DE fo verify, Here a few things to know...

if the solution is v = 0 (just zero) than the solution is often called the trivial solution (because
it typically doesn't give us any meaningful information about the problem scenario).

if the solution or the original DE has a restricted domain (only some values of the Enpﬂt{s) can
be used) then the solution is defined over only an interval of definition (existance, validity)

which would be the list of domain values that are allowed in the original DE and the
solution(s). :

Because the solution to a DE is an equation, it can be graphed and the graph of the solution is
called a solution curve,



1.2: Initial Value Problems
Often, a DE has a family of solutions

Frequently, the solution fo a differential equation consists of a ‘family’ of
functions where the general structure is the same but there are one or
more constants which can be set to any value.

For example, it can be shown that for this differential equation: v+ 2xy2 =0

..any function of the form y = ~is a solution to the DE, regardless of the value

*+C

you choose for C.  Such a solution is referred to as a ‘family’ of solutions or sometimes
as a 'general solution'.

Cz.2 C=-1 620 G50 Ca.f Cua2

If you were to graph the sclution
curves for this family of solutions for
Cvalues of -2, -1, 0, 1, and 2 you
would get:

Any of these functions satisfy the
original DE.

R S W
Initial conditions

But often the DE represents some real-world situation where in addition to the DE
itself, you also know something about the ‘state’ of the system under particular
circumnstances. Frequently, one of the variables is time and so this might be, for
example, knowing the position of something at a given time.

" This extra knowledge serves as a 'constraint' o the problem, and this is known as
specifying initial conditions. If we know the initial conditions, we can use it to
select the particular solution function curve which makes these conditions true.

Let's say that in addition to the DE:
DE: ¥ +2x%° =0
Family of solutions: V=

2 +C

We aiso know the initial condition:

This is telling us that when x is 3/2, y must be 4/5, Cs= 1 34
meaning that the solution which fully matches this scenario must pass through the point (-—2-, "57)

o,

-...and we can see from the graphs of the solution curves that the one with C = -1 passes through
this point, so the solution with C = -1 filled in fits the scenario exactly.

1 - 1
*+C X +(-1)

1 < 1Ne€ resulting single solution function is often called
xt -1 the particular solution. ‘

y:

y::



We can find the particular solution to an initial value problem without graphing

A problem specified in this way is known as a initial value problem, and we can find the
particular constant algebraically, without needing to graph:

Given:
DE: ¥ +2x° =0

i
Family of solutions: Y=

+C
3y 4
and the initial condition: y(z) =3

We just treat the initial condition as a point, plug it in, and solve for the constant;
(D= 75
? —

(y+¢ L (D=

Higher-order DEs have multiple constants, which require a system to find

When we have higher-order DEs, we often encounter solutions with muitiple constants. This
means we will need a separate initial condition for each of the constants. Usually, one of the initial

conditions will specify the value of the function at a given x, but the others will specify values of the
derivatives at given x values. This is easiest to see through an exampie.

Given:
iven DE: y"w-ny

= CuX =X
Family of solutions: y=Ce* +C,e™ —72 Y — Cla -G

“and the initial conditions: y(l) = () )"(l) =e
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Existence and Uniqueness of a solution

Beginning in Ch2, we will start learning techniques for finding the solutions families for different
forms of DEs. Here, we are assuming we have a solution, and if further initial condifions are
specified, determining the specific constants that give the particular solution.

But it is also important to consider: will a solution even exist for a given differential equation? 1f so

and we find that solution, is that the only "unique’ solution? Or couid there be other solutions which
would also satisfy the DE?

in this introductory course, we will just use a single theorem for now which helps to determine if a
unique solution exists for a given first-order DE:

Let R be a rectangular region in the xy-plane definedby a<x<bh, cSy<d

that contains the point (%, ¥, ) in its interior. If £ (x,y)and Z are continuous

on R, then there exists some interval Z, : (%, —, x, + %), k>0 contained in[a,b]

and a unique function y(x), defined on [, that s a solution of the initial value problem.

What this is saying is if you have a first-order DE that can be solved for its derivative on the left side
equals a function on the right side, you call this function on the right side f(x,y) and then fake the
partial derivative of that function with respect to y. Then consider both f(x,y) and the partial derivative.
Any interval with both f{X,y) and the partial derivative both exist will contain a single, unique, solution.

Again, this is easiest to understand by considering a specific example...

Given the DE: (3 + y’)y’ =x°

Determine where in the xy-plane this DE is guaranteed to have unique solutions.
. ,
First, solve the DE for its derivative... y' =

1+

2
The function on the right is fxy)... /(x,y)=7 : -
y

(107) S [#1-(#) g [1+7°]
(1+»)
_0-(#)3 3y
() (+y)

Now consider the function and partial derivative, are there any X,y values which cause these to be
undefined?

Take the partial derivative required by the theorem...

g,
%

fT%y):1f23 o T
y oy (1 + 5 )
Undefined when denominator = 0 - Undefined when denominator = 0
| 1+ =0 (1+5*) =0
y=-1 | 1+ =0 7
y=m1 . y3 =1
=]

So for all x,y except where y = -1, there is guaranteed to be a unigue solufion fo the DE.

The theorem doesn't specify what happens aty = -1. It could be that there is no solution for these polnts.
it could also be that there are solutions, but the solutions aren't unique {there are multiple‘solutions).



2.1: Slope fields, solutions curves, phase portraits
First-order DEs define the 'slope’ of the solution function at each point

Throughout the course, we'll learn various ways to obtain the solutions to
different forms of differential equations, but first we want to explore ways
to picture what a solution to a differential equation is. In this first section,
we'll consider only First-Order Differential Equations (FODES) of the

form...
% =f(x.7)

...which has solutions of the form: y = ¢(JC)

If you were to plug in various X,y points to the right side of the DE and evaluate, the result is the
slope of the solution function at that point. This could be graphed by including slopes at many

points, creating what is called a glope field (or direction field):
K

s r et BT 10t . . o
et ...where the little line segments indicate the

slope of the solution function curve at that x,y
value.
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The solution curves follow the 'flow’ of the slope field line segments

If you then impose an initial condition, this defines a particular solution, which has a specific
solution curve, and which wili follow the flow of the slope field:

S By specifying an initial condition, for-
Sy~ = = = example what v is when x is zero, we
N get different particular solution
NES N curves. '
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Sketching slope fields

To sketch a slope field, you pick a large number of x,y values, plug them into the DE to find the
slope and add lines. Here are the siope fields for two DEs with the calculations for just a few
’ points listed:

§§=xy+x y
cody
(£2)| &
() RS
(-] o
ooy |1
oy |2
(12)
(2-2)] -2
(2-1] 0

Non-autonomous DE

Another classification for DEs: A Ordinary DE is autonomous if the independent variable does not
appear explicitly. (Meaning that the funclion on the right side of the DE is only a function of the
dependent variable and doss not contain the independent variable).

The DE on the right is autonomous because the function on the right side of the DE contams

. only the P variable {the dependent variable) and not the independent variable, t, and notice how
it does not change with {. The DE on the left is non-autonomous because the function on the
right contains both variables.



Many ODEs in the real world are autonomous

Frequently, ODEs in the real world have time as their independent variable, but the derivative is
a function of the quantity of the dependent variable, this does not change over time. The resuit

is an autonomous FO-ODE:
& i fgz:k(r—z;,,) i‘lgzs—_LQI
dt dt at 100

Critical Points divide the independent axis into regions
The zeros of the function on the right side of an autonomous FO-DE are called critical points.

These are interesting because they result in what are called equilibrium {or constant) solutions.

Let's find the critical points for the autonomous FODE graphed above.
apP Pl2-Pl=0

4 . p(2-P)
a

Notice where the oritical points occur on the slope field. ..

Critical point P = 2

Critical point P = 0

Phase Portraits
Because the critical points are dependent variable values that cause the derivative ('slope') to be
zero, these occur at Iocations where the slopes on the slope field are alf horizontal...

For dependent variable values between the critical points the slopes are either positive or negative,
and in a 'region’ between or above/below critical points, the slopes for all points wili be all postitive or
all negative. You can Indicate this by including an arrow showing direction of the slopes on a line

displaying only the depeandent axis: P

Crifical point P =2 wmm—w.

Critical point P = (0 e

Such a diagram is called a 1D Phase Portrait {or Phase Line} J

Equilibrium (Constant) solutions

At the critical points which are defined for autonomous FO-ODEs, the solution curves are horizontal
lines and solutions from other initial conditions tend to "flow into’ these lines. This is why these are
referred fo as equilibrium (or constant) solutions. ’

Critical point P = 2 wewmmm:

Critical point P = 0 ==mmm:

If fact, these equilibrium solutions behave like asymptotes...other solutions tend to align themselves
- with these constant solutions as you approach large values (positive or negative) in the independent

variable. .



Stable and unstable critical points, attractors and repellers

Because of this behavior of the solutions, the critical pointsin a phase portrait have special names
depending upon the slopes above and below them...

P

This critical point is called stable and also calied an
2 attractor.

This crmcal point is called unstable and also called an
repeller.

The only other possibility is if the slopes are
the same direction on both sides of a critical
point. In this case, itis called semi-stable.

Isoclines

Last semester when we studied muitivariable functions, we sometimes chose different output
values of the function and draw curves in the domain that produced those values called level
curves. We have something similar for DEs called isoclines. We choose values for the
derivative (the 'slope') and then sketch the curves in the x-y plane that would produce that slope.

dy

Jic A o+

a2
xXp+x=2 xXy+x=4
x(y+1)=2 x(y+1)=4

X
2 4

T ="‘""*”l
y - 1 y .




2.2: Separable Variables

If you can separate the variables, you can solve by integration

For first-order DEs, if the function on the right side can be factored into
two separate functions, each of only one variable...
dy ‘
e =z O X ) Ay
- =&(x)h(»)
...then it is possible to solve by integration.
Separable DE Non-Separable DE
ﬁd_y_ — yzeaxwy é’- = p+8inx
dx dx
dy 2 3x_dy
=yee
e =Y
dy 2 Ay
— €
= =(¢)(e”) |
To solve a separable DE, first, we separate the variables (each side contains only one variable):
abr =g{x)dy
o ...then we integrate each side:
N

I}T(lﬁdym Ja(x)as

This produces an equation with a function of y on the left and a function of x on the right...a
solution to the original differential equation.

Ex) Solve idxm _‘b’_m
) dx x4 dx 4
l-dyzxdx
y
jldyzjxdx
y

Injy|+C, =%x2 +C,

1, Produces a family of solutions with different
In§y| =X+ C integration constants. If we have an initial

2 condition, we can plug in x,y and soive for the C .

to get a particular solution.



Partial fraction expansions often involved for higher-degree polynomial functions
When the function on the right side involved higher-degree polynomials, we sometimes need partial fraction
expansion. Here is an example to review how this works...

Ex) Solve % oy 4 It we take the integral of both sides now.

i
1 E ? o 4 dy= j o
T dy=d 7
y -4 . we have no easy way fo integrate the left side
The left function can be expanded with partial fractions: (integration by substitution or by parts doesn't
1 1 4 B work).
¥ -4 (p-2)(y+2) y-2 y+2 . , .
s S0 we often use Partial Fractions to splita
i __A(y+2)  B(y-2) complicated fraction.
(r-2)(y+2) (3-2)(r+2) (y-2)(y+2)
Ay+24+By-2B=1
(A+B)y+(24-2B)=0y+1
A+B=0
SO ;
{ZA —2B=1
a=1 p="1
4 4
() ()
V-4 y-2 y+2
Back to the DE: ...but this solution could be solved expilicitly for y:
1
(/4 ( ) aﬁw dx lln i 2 C
y- 2 y +2 4 |y+2]
/ y-2
In|t—=4x+4C,
y- 2 y+2 ’I% "'1
2 x
%ln}y-z|~;may+zl=-x+c o= s
y-2 =+ eaxea,
«3»111 ymz =x+C, y+2
rE y-2 =+e%e**
This resuit Is called an implicit solution because y+2
it isn't solved explicitly for the dependent variable, -2
Y2 oy
y+2

y—2=4Ce 4x(}’-!-2)
y=C *y+2Ce*+2  or  y=-Ceé*y-2Ce™ +2
~Ce¥y= 2C’e" +2 or  y+Cefy=-2Ce"

(I ce ) *+2 or y(l-l-Ce"")m —-IZCe4Jr +2
1+Ce™ 1-Ce"™
=9 T, T
e G PYorE

..and since C couid be posmve or negative, these can both be
fepresented by:

I+ Ce*
1—Ce* |



Solution curves for this example

Here was our family of solutions to the DE 2«; = y2 %4

1+Ce*
1—-Ce*

FFor different initial conditions, we would have d_iﬁerent constants, C and different sofution curves.

If y(0)=-4 i y(0)=-22
C=3 C=21

1+3e™ 1+ 21e"
nd P = Yo -
Y= e nd Y=

Be aware, you can 'lose a solution' with this method

Because when we separate the variables we are typically dividing both sides of the DE by the y variable
function, we could have values of this function which would go to zero, thus undefined in our solution, but may
still represent a solution.

In our last exampte, the DE was f,{)’m = P —4
i y

and we started by separating variables which caused us fo divide by the right hand side:

The left side Is undefined at y = 2 and v = -2, 50 our solution would not capiure these solutions.

You should manually check any values which make the functions undeﬁned after dividing. In this case, this means
checkmg two solutions:

y=2 y=—2

PH_y Y _o

dx dx
©=0F -4 (©)=(-2) -4
0=0 0=0

4x
Which means a complete family of solutions is: po= 21 +Ce and y= 2, y= -2
. ) C 4x
{and actually y = 2 is included in our first solutions for the case C=0)



Try this one...

Ex) Solve ﬂi =y Once you have the implicit solution, try to find the explicit solution
- (and let's assume that y is always positive for this)

—‘l = kx

Sjc% Jeax

/g/ﬁ‘ﬂ fx+C {ir“yh et Xea/qf%;m)

Lalyl _ ek)u(, _ kxg(“‘ ot
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P e . LY
_“_,?Efi{ (oot miliar? A=Pe™ o qunetly I preperie
Q = et e o mmaunt YU

Try this initial value prob!em...y
dy 5
Ex) Solve g 2yl Q)= —
’ at y y( ) 2

/:9 +lydt =t
Aj = {,’fijae't
My = (1294t

S I/Zj

hy sbstrtebor’. = + +C
u=-29
Ju =24
s> dy= L
S "}LZW%J"’\)‘ /ﬁ
a4
“is - du
4 Julal
i =t C
. [[aﬂ[?cf*«é;fo(c%m )

get nn ek wgeurf«'
?M"'\ &~ (:ﬁegja,ﬁ eV

(ﬁ»/ e&/]?’cf{' J"Q/Wf:vnl Jalpe 'FD/:’
“’75[14( (*21/ —44C,
/&“"Z‘jl’:/llf’é | : )
%“"'ZJL (-3¢ gze <_c 64

[ - Zj) Ce = (p(w; (| dvartsC )

l Zj -2t
- ¢ -
Zj: \~C¢« —2 [
- IIC&'Z# e;sif‘&;ﬂ-w/vcfw émmz)
-z
nyg“"MeW«&O!W X=0, Y7
> l’CéZM _y-c =1

.
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K



One more...(a homework problem)
#27) Solve and find the explicit solution for

v /l""yzdfxm lwl..,.xchvmg y(é})mlé
V l"jl‘ Ay = mdj

-\
Ji=> o= \r‘“’“ ”‘Qfﬁ

V= fm’

sl e [ i (D)

~ N - )
sin fy) = sin () +C ,r::f{f?m

/(,(u) " lﬂt’"’%( dana(F‘f';?q % S@j"”c‘, M N

St/\ /D)««Sof\(, )*C

V- g‘if? (=3
, R ﬂ%&cﬂf ,yapﬁc..ﬂu ’ fw(u(j\bq iS5

J

a\f‘ '( )= Sm‘l[*a)

/ﬁ/ @\k/h&r’! §= /%’h)ﬂ }w(v "‘:" “ .

ana'ly) = S (x)+ =

/\/’ &[y) J \

\ﬂ' Sln[i—%\«; ﬁ;n(m+d) a%umsun&cwi‘ujmw
wineyti 16 ,

%’ 5\/\&://‘ [?23%5 5 + mf{g‘m (ﬂﬁﬁ;ﬂ
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2.3 Sdlving First-Order Linear Differential Equations
First-order, linear differential equation forms and terminology

We have one solution method so far to find sb!utions: we can find a solution if the

variables can be separated by integrating. Buf this is frequently not the case, and for non-
separable DEs, the solutions methods depend upon the form of the equation.

A first-order differential equations is defined as linear if it can be written in the form:

& (1) 2+ a,(x)y=g(x)

Fur’cher if we divide everything by a,(x) we obtain what is called the standard form:

_&(x)
dx a;(x)() al(x)

L\ Py =1(x)

Also, if the function on the RHS is zero, we call this a homogenous DE:
homogenous ‘
@ dy
~—+P(x)y =0 it Plx)y = f(x
ZP(x)y=0 2 P(x)y=1(x)
S(x}=0

nonhomogenous

Property: Solution is the sum of the homogenous and nonhomogenous solution

For first-order linear differential equations, a property states that the solution wili be a
sum of two solutions:

Where Y. is a solution of the associated homogenous equatlon and Y, is a particular solutmn R
of the nonhomogenous equation.

(More about this later in the course...)

Procedure for finding the solution to a first-order, linear differential equation

{If you are iriterested in the derivation of this procedure, I've posted this in a separate PDF - itis
5 pages long and quite involved, but take a look if interested :)

1) Put the equation in standard form: %4- P(x)y=f(x)

2) léentify P(x) and use it to compute something called the integrating factor (1.F.):

j P(x)de

I1F.=¢

3) Multiply both sides of the DE by the integrating factor. The left-hand side of the resulting
equation is automatically the derivative of the integrating factor and y:

%[ef Py y] = £ )

4) Now integrate both sides of this equation to obtain the solution.



. An example

’ dv
Solve x-—4y=x’¢"
P

» 4
1) Put the equation in standard form: —g—w; y= xe*

2) Identify P(x) and use it to compute something called the integrating factor (I.F.):
. 1
P(x)=-4% LF.= 0% e
: x
IF.=e™ogn =5 x50

3) Multiply both sides of the DE by the integrating factor. The left-hand side of the resulting
equation is automaticaily the derivative of the integrating factor and v

3 4‘ ~4 {5 %
(L-2))-x1(ve)

4) Now integrate both sides of this equation to obtain the solution.
d
%f[x“‘ y|=xe"
d e X
[l y]de=[e ar

(bypam} T 'dwme". dx
du .

;}xmm} Ia‘vmfe"dx
du=dx v=e*
‘uv—wj‘va’u
x“‘ymxe"ﬁje"dx

xty=xe"—€ +C
y=x*(xe’ —& +C) :
y=x¢ —-x'e’ +Cx* l ()670)




You try this one... |> al /‘Qﬁo“/j h standad Ao

Solve w")’ms =0 2) fx\y=-3
e y 7 ) f’(xM X 5—%)( 3% ( <X Ceo)

so TF = € =€ ze
2) e’”( gf‘" 3)=¢ ()
dx [£—37‘j )

W&x (= < xca:)j

remrmTR

LS £y Vo
Let's work HW #13 together... ‘)j + T Yreiex S'ze_r_z.
X2 . TE -
- g = FFE
j’.‘i’}ox ﬂjfuz Pokw=

= % _\_:LZA' \ T -~
et Jrethr e

2,1 e g *
#13) Sove x’y'+x(x+2)y=e Ster o % A

(%22




Transient terms...

In our solution to #13, the 2nd term fades out’ as x increases towards infinity...

X X

= e e (o N :
TTRETE e

(the first term does not, although this is harder to show...we need to evaluate the limit and use
L'Hopital's Rule)

X

lim —
X Zx QQ
e’

lim e = e

Xty 4x o0
"

lim = = 00

X PeD 4

If a term approaches zero as the independent variable approaches infinity, the terms is called a
transient term (which means it affects the solution for awhile, but the effect is 'transient’).
Eventually the solution will 'settle’ to the solution including only the non-transient terms.

Initial value problems

Just as with any differential equation, if we are provided with an initial condition, we can solve for the
value of the constant to obtain the particular solution.

Ex) Solve —g—wyyxx y(1)=4
" 1 v ’
- (=, Tr-eleer (-rexad)

" [%ﬂ} =&X(x)

by et
= ( xe® dx u=y Av=e”
ﬁcl& ﬂ j A V‘”/}@X

X ¥ Ax
_NLX G e*o "4 Y uv - J\M(H ¥
| xet —JeTdy >nef-e

. A ,J-;L.,_.La < o !MM\
7S A '('Y%M\Qm[ ._k//\ LD &V, 4{\1 -7~
14 Ce [y=x1 4 ele

Singular Points

\
Since we begin the procedure by dividing by @, (%) i there are any values of x which make this first term
zero, the standard form DE would be undefined. ’

Values for which this occurs are called singular points and we have to be cognizant of the fact that the
< solution is not defined at these values.



‘\,./’

What if we can't integrate?

Consider this DE:

if we try to express this in linear, standard form, we get:

% =™ »(3)=5

%4—(0));:2“"2-

P(x)=0

f.F.mejm# =¢°

=

1

...and we're just back to the original DE. But this cne is actually separable:

=e dx
fa- o
ym= je“"zdx

The problem is, we can't integrate the RHS directly.

But if we have an initial condition, we can make progress using the FTC part I:

X

Ty(x)= _"e“’zdt +y(3) |

e

al

kS

J'g(t) d

@

|+t



The Error Function
y(x)= f e’ dt+ ¥(3)  isthe particular solution to the DE % ="
3

subject to the initial condition ¥(3)=35

This éolution is expressed using an integral. This particular integral occurs frequently in natural systems
s0 it has been given a hame: the error function.

X
The Error Function is defined tobe:  erf (x) m% f e’ dt
%o

2% -
and the Complementary Error Function is defined o be:  erfe(x)= wy_w e dt
% Ed

Using the error function, we could write our solution:
NS
y(x)==-erf (x)+(3)

().



2.4: Solving First-Order Exact Equations
First-order, exact equations

If have a differential equation such as fféi.___éi sometimes the equation can be rearranged

dx x
by separating the differentials fike this: ydx+xdy=0

A differential equation written this way is referred to as in differential form.

if a differential equation can be written in differential form with a zero on the RHS:
M(x,y)dx+N(x,p)dy=0

oM _ow
Ox

and it is also true that:

The differential equation is called an exact eguation.

There is a specific procedure for solving exact equations (derived in a separate posted PDF).

Procedure for finding the solution to a first-order, exact differential equation

1) Put the equation into differential form: M ( X, y)dx-}- N ( X, y)cb) =0

2) ldentify M(x,y) and N(x,y) and use partial derivatives to verify this is an exact equation:
oM _aN |
dy ox

17
3) Postulate a solution of the form £ (x,¥)=c¢ and initially set -éji =M(x,y)

then integrate both sides with respect to x to find an initial, partially complete, form

of the solution:
f(xy)= jM’(x,y)dx +g(»)

(note that the integration constant is instead some unknown function of y).

4) Now differentiate both sides of the resuit with respect to y. This produces an
9
expression for M:Z:
oy

5) Set this expression equal to N{x,y}, and solve this algebraicaily for g'(y).

6) Integrate the resulting ¢'(y) expression with respect to y to find g(y)..

7) Finally, fill in g(y) to the partially completed solution f{x,y) from step 3.
The final solution is: f (x, y) =¢ where the constant ¢ is set by initial conditions

for a particular solution.



An example

e — ycos
Solve ﬁ'z“w"-'“ 5 A d
dx  2xe”” —xcosxy+2y M N

1) Put the equation in differential form: (ezy —ycosxy )dx+(2xez” —Xcosxy+2y )dy =0

. oM ©ON
2) ldentify M and N and take partial derivatives to confirm this is an exact equation:. ——=—

oy ox

M=¢e”?-ycosxy M, =2¢" ~(y-;§—,[¢05’9’]+°°~"*3’ f;bf])

e D ( y(-xsinxy)+cosxy(1))
= 2€” + xysin xy — cosxy

N =2xe” —xcosxy+2y M, =2 -—(x—%[cosxy] + cosxy-gx-[x]] +0
== Qg™ ~(x(mysimg7)+cossgf(1))
= 2€"? + xysinxy —cosxy
‘ ' o of
3) Postulate a solution of the form f(x,y)=c and initially set =M (%)

then integrate both sides with respect to x to find an initial, partially complete, form

of the solution:
f(xy)=[M(x.y)dc+g(y)

(note that the integration constant is instead some unknown function of y).

%‘mme”’ - PCOSXY |
f(x,y)xfe”’ —ycosxydx:]'e”’ds—j'ycosxy dx
u=xy du=ydx
= xe’’ -foosudu
= xe"” —sin xy

f(x.y)=xe"” —sinxy+g(y)
{integration constant can be a function of v}
- 4) Now differentiate both sides of the result with respect to y. This produces an

expression for % f(x,y)=xe” ~sinxy +g(»)

% - %[xezy ~sinxy+g (J’)]

=2xe” - xcosxy +g'(y)
5) Set this expression equal to N{x,y}, and solve this algebraically for g'{y). v'

of .

Y _N(x,y

oy ( )

2xe” —xcosxy +g'(y)=2xe"” —xcosxy+2y

g'(y)=2y




6) Integrate the resuiting g'(y) expression with respect to y to find g(y).

g'(v)=2y
g(y)=[2ydy=y

7) Finally, fill in g(y) to the partially compieted solution f(x,y} from step 3.

The final solution is: - f (x, y) = ¢ where the constant c.is set by initial conditions
for a particular solution.

f(x,y)=xe” —sinxy +g(»)

f(x,9)=xe” —sinxy + y*

{Nofe: the solution Is not the iy} It s My y) equals a
constant, This Is the general solution and the

xe”” —sinxy+3y* =¢| constant, ¢, would be established if we had an initial
condition.}

solution...

You try this one... Solve (2xy)dx+(x*~1)dy=0
%"g:z;c g:’,Zx exact
%‘ij s flx9)= {(Zzy)dx = ,Xz’j + j[ﬂ)
: Must-
NSw ‘%é'% % +?,/.9> X =
S 9 '(,) =-1
Do 4lp=S9lddy = )~y =
od Llyy) = x5 +9l)
=Xy -y
}olw‘fﬁoll 3 xzy Y =C [ g\,?ol? cﬁ)

s

o i-(\ you went o Solue exfﬁ&(},’fj ’ﬁ’/ y}




Let's work an inital value problem together...
dy _xy® —cosxsinx B
v Ex) Solve =" (1 xz) (0)=2
D[lf 2)09 (xy ——WJXSH‘\)&M)(
[K Zcosxstnpdyx — (ya-x?-))ﬂly S
(m,n Hv/‘/_) l’q | o wnle H « fs‘ff&.r‘ll@/)

Lorsesinn -yl 4 (y61~ BNy = o
.M

% :'?‘__Lx j %\’:‘) fd "‘“Z%'j v exwet

fﬁ:& 7y = 9D =9- yx&
‘ r_1 2.2,
g}iéu; Hud)= Jljv*j%)ﬁy = wj 2Y x4 g/xB
e&h&/) P Q‘_G_ oz, l()() 2«f @SM;,,&,_X]L
Jc= Y X )
52 7’()() = el g inX
l)\".:56>\)\

e g(r);«jm;m‘f\?dx o

| 2
e A
L .
So M= 2y Zy X+ o X
5/(%47}4 3 écjz[l -')4) —P:L,/ s?ﬁzZ‘ =C

s ST
AP

PRy

i;mealB
vjo w, Inifad #PM% 'jlo):;

Ll + 1=
I40 = C/ (=2

;c /a/’w (w{g/,(cld/’/%b/\
g %ﬂa—w Lonx =T l




Sometimes, you can use an integrating factor to turn a DE into an exact equation
{Derivation for this procedure is in the published PDF}

1) if an equation in differential form is not exact:

M(x,y)dc+N(x,y)dy=0  put M N

oy ox
2) ldentify M and N, and form the following two quotients with partial derivatives:
M,-N, . N-M,
N M

3) Algebraically simplify each quotient and if either simplifies to be a function of only one of the
independent variables, then that quotient can be used to compute an integrating factor:

MM, o Ne-M,

I.F.xe'[ u o IF.=¢ M
4) Multiply the original DE by the L.F. to obtain an exact equation.
{Note: this procedure only works in some cases, but if the quotient produces a function of only one

variable, the resulting DE will be exact.)
An example using an L.F. to make an equation exact

| m, _ =X lot-e@wct et
Ex) Solve (xy)dx+(2x2+3y2w20)a37:0 Ay =X %:f" \ J >

peoheaty,  My—Nx ' Wx—y
. A _ Y7 .
-— % L( —'X . .%-2-(-“" —— .
CX)—'("{X) - ___2_;.}.;«.-{—-«-» o~ __')’c‘______, - Xj - g =
le,&,gyizwzﬁ 2% ’*’BJ "W X4 .
, 2 34 faly)_ 3
m-/ﬁ/‘j't‘hy ’

) o L g, vt )
‘ﬂ[xy)dx 4+ 75(7'Xl*‘3y?"7"‘=’)”(j o ) exaet (@Mﬁ,f& = y e @)
[xy")d}f& + [szyﬁm?*yf l"”zw;««‘fff’ )
] 4
oL de‘( w 2P = 5X7?afx; zZrY +9 _ .
. T9X M 3 S"_Zaj} $0 j'{ﬂ):ay ~29y
oL ’Z_)(Z’L(3+gl[y).::=. Z;(Lj +3j
o o
i gly) = f357 22572y = iy %Y
avt Fpdl= 5%y 7 % -5y
(o J‘lWA}A ;):
&
%:Xzﬁ k{w‘" ”%ﬂ

T b_jouf— | \
o] M M (']




2.5; Solutions by Substitutions

Sometimes you can do clever variable substitutions to get a form you can solve

It is sometimes possible to start with 2 differential equation which doesn't maich any forms you
know how to solve, but by making a specific variable substitution, the resulting differential
equation is now in a form you can solve.

There'are two specific substitutions we will include here: 1) Bernoulli Equations
’ ' 2) Reduction fo Separation of Variables

Substitution to convert a Bernoulli DE into a separable or linear DE

A differential equation which can be written in the following form...

%+P(x)y:f(x)y" Jor any real number n

...Is called a Bernoulli Equation.

1 For Bernoulli equations, substituting « = y'™”

results in a separable DE which can be solved by known methods,

Bernoulli Equation example
e W=

dy 1 T _
Solve x‘?d;c_+ymx2y2 %(%« AR TARS So u:ﬁ‘ L;Uf';é
S N Y
B TRt i =L

()

d — —L ; -_-;"’X

7&6 Xﬂ 1 &L %E_L _ _1.dy —
Ines DE wf P¥= "X (vt ¥

50 B, 2o W "
,,fr\r;c!nx" 5?:,:—;



Substitution for Reduction to Separation of Variables

| For a differential equation which can be written in the foilowing form...
" —%=f(Ax+By+C)
-{a composite function where the ‘inside’ function is linear in x and y)

...8ubstituting the 'inside’ function. u=Adx+By+C .

results in a separable DE which can be sclved by integrating both sides.

Reduction to Separation of Varlables example

Solve %:(m2x+y)2~7 y(0)=0 '5}6*2; uz’":}
u=—2xtJ "made b oq
/ M é'x’f&éz i
j;""’ﬁdx 9g #X gy = AX
| ()% o
#K’IJ C’@O\) +U AX (___if_ )&l = AX. |
“.—’3. Q‘(’ﬁ - 78 -\ f
% = -2t %‘t’x Mfff we- ;hgtqu}/ /a,ﬁq!"éw«,ﬁﬂw e,\v/muw o fely
. 7 A L
6 dy. = — = : .
g X v T e W fapee 6
' g(n-3) 436"
~ (1+ce®M) Llu-38=t S 203
w = 2 — X A—ﬂ;&"% - 2h .mi o,
Gufp az ZXEY ' br= A b2
5 (1+Ce%) L LN s o 2%
vy — e | 6 u-3 ut3
Zy+y - ke , 7( . (e Sﬂl%
T ?(Jf,‘féx) gzolw?\\m Z,lj Mx’ﬁcﬂu “-’:';j wtd = |
y= Zxt e | W= u-2
T Aw zd
Wow véo)_,ﬁ e ELJJ;,;W )= Xl
(/o):;‘ Zj@)‘\" !"""{:@Q b%lu”) .
: = w-2{= x+t
o= A2 == Sy AR
&y £ _Ce
%3:“’/& T 4x +3[e¢'6x
ux _ :
: , u-3%= [/65%(%.5—3\ = ce U

31+

AR <7)
TJ‘(V&& )= 3le |



One more example...

Solve é’y...wy:@’yz _ - =2 =
: ; ,‘:1(-.; M“!// .....
_ Ay Ay B A ‘
%" T R ol 4
2\ Ay 7T _y - ¥
%‘ = (o)) +(~ 2)4;1 /7€)
ol z Ay _x,"
T T
X / - 3
dy _ ,ﬁ""‘fﬁ( —T 9
dx AX Oﬁl +_J- = -'e,?(
A I
4 I
dv 4y = €”
AX l
[ ‘rerr DE W//O‘)“ Sy x
o I = JU ST Tre




2.6: A Numerical Method
Reminder about terminology for first-order differential equations

dy

We are given a differential equation and for ﬁrst~0rder DEs, this would be of the form: ;{;-—- f (x, y)

Plugging values into the fix,y) gives the 'siope’ of the solution at that (x,y). This could be graphed using
lineal elements to produce a slope field:

e T e e
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e
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The solution to a differential equation is a function: y = (15(36)

...and graphing the solution, produces the solution curve (for a particular initial condition),
which follows the pattern of the slope field.

We can't always find the solution function analytically
We now know some ways to find the solution curve function y = ¢(x) analytically.

But not all differential equations will be in the forms we know how to salve. We may still need to know
something about the solution, though - need to know the y for given x values in the solution.

When we can't find a solution to a differential equation analytically, we can resort to using a numefical
method to find the approximate solution - an approximate y value for any given value x for the solution
curve, for a specific solution curve (that is, we need to be given an initial condition).

The method we are going to present here is called Euler's Method. This method takes
advantage of the fact that with a first-order differential equation of the form...

~z= f(x,5) ...with an initial condition given: y(xs) =¥,

...we know the initial condition is on the solution curve, and we can plug in this (xo,yo} into the differential
equation to get the 'slope’ of the tangent line to the solution curve at this point:

¥ -
y(xo)—yﬁ
] 7
% trr,
tir
N
~ Zrier.  dy
et == (30,30} ="slope
NRRNINI: 1. X
AV S NN S R f!‘ .
RSN N A N Ny :f,,:m
%:t%::%ﬁ:iumﬂfxlwlla
1\\\\\\\\%\'«—”:;;i/
N N A
Littayva s w=re sl
B EEE SRR A Sl
FEALA LS Y TAIN AN
LR T O O O O ¢ O O N e Bl
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Euler's Method

Given: %: f(x,y) ..with an initial condition given: ¥(%6) =¥,

We can move a distance h away in x from the initial condition towards the x value we wish
to know the solution curve y value...

solution curve
desired point we are trying to find

o T—
™ 1 1 X
Xo Xo+h X for our desired point

...and use the slope to compute an updated y value;

s Tomet = X -
Do) soper =22 B

SO0 Y =3, +hf(xo=yo)
We then use this new point (x4,¥4} to establish the slope for another estimate moving closer

to the desired point by plugging this point into the original DE f(x,y) function to establish
the next slope:

solution cirve
£ desired point we are trying to find

" : . . > X

This process continues iteratively until we are at the desired x value, and we then have an
estimate of the (x,y) on the solution curve at the desired x value.

An example
Use Euler's method to obtain a four-decimal approximation for- (1.5)
on thesolution curve for 3" =0.2xy with y(1)=1
Let's set h = 0.1, taking 5 iterations to reach from x=1 to x=1.5:
(%0 30)=(L1)
y =1+ 0.1(0.2(1)(1)) =1.02 (%3,)=(1.1,1.02)
¥, =102+ 0.i(0.2(1.1)(1.02)) =1.04244 (x,3,)= (1.2,1.04244) ’
¥, =1.04244 + 0, 1(0.2(1 .2)(1_.04244)) =1.0674... (%,5)= (1..3,;.0674...)
¥, =1.0674..+ 0. 1(0.2 (13)(1 ,0674...)) =1.0952... (x,, )}, )=(1.4,1.0952...) \
¥s =1.0952..+0.1(0.2(1.4)(1.0952...)) =1.125878.. (x,,y;)=(1.5,1.125878..)
y(1.5)~1.1259



There are many numerical methods

- Euler's method is presented here because it is straightforward and is a good way to understand how
~ ~ numerical approximation methods work, but in practice other more complicated methods are oﬁen

used instead.

One method that is used often is called the Runge-Kutta method. We will explore this topic further
towards the end of the course, Ccmputmg approximations numerically can be tedious, so this is often

~ done using a computer.

Later in the course, we will include an introduction to MATLAB programming (actually, we will use

~ OCTAVE which is a free open-source version of MATLAB with the same syntax), and we will write
simple programs which allow us to use more advanced methods, such as Runge-Kutta, to find
numerical solutions to differential equations which are difficult or impossible to solve analytically.

Variables Separable? Eirst-Order DE procedures
S(x)dx=g(y)dy '

yes no
(integrate both sides) First Order Linear?

%J&-P(x)wa(x)

' no

yes
(muitiply both sides by LF., First Order Exact?
M (x,p)dc+ N(x,y)dy =0 %}%%

left side is IF*y integrate right side) /\

yes no

(find f(x,y) whose first partial derivatives Bernoulli?
=M and N like a potential function %mp(x) y=Fx)"
solution is f{x,y) = ¢} /\
yes no

Composite Function?

(substitute = y'™) ,
%m F(Ax+By+C)

yes no

(substitute # = Ax+ By +C) use numerical
approximation methods



First-order wiSeparable variables? Separate and integrate each side.

First-order Linear?

First-order Exact?  Procedure for finding the Solution to a first-order, éxact differential equation
1) Put thie equation into diffefential form! M( x,y)dx,,f, N(x,y) =0

2) Identify M(x,y) and Nix,y) and use partial derivatives to verify this is an exact equation: -

é;ée&ut&an
,;:{x,g)wI.M(w}m:g(x
(riote that the integration‘constant is instead some unknown functior of y).

4)Now differentite Both sides of the result with respectto y. This produges an ‘

pes

“expression for fé;;
5} Set this expression equal tci,ﬁ?{x,y}, and solve this algebraically for g'ty).

- 6) Integrate the resulting g'(y) expression with respectto y to find g{y)..

7) Finally, fill in gf completed solution f(x.y} from step 3.
The final solution is: f (ny)=c ‘where the constant ¢ i set by Initial conditions
‘for a particular solution.




s ﬁmm&f 'e@m' ‘ainplifes to be g funcion of dnty ane of the,
Vﬁtﬁ&fﬁi&aﬂ be usad-m fcempum an %rtmgratmg factor:

“ LF=g ¥

BOME cases; bm i the: quatism praduces & function of only ong
Variable, the resulting DE will be acLy

(substitution) substitute: w=y""

unction? (substitution) %W{mwyw} substitute: = Ax+ By +¢



