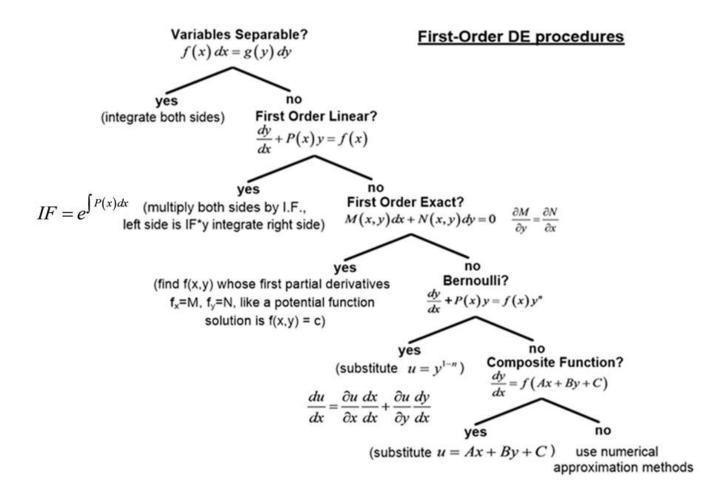
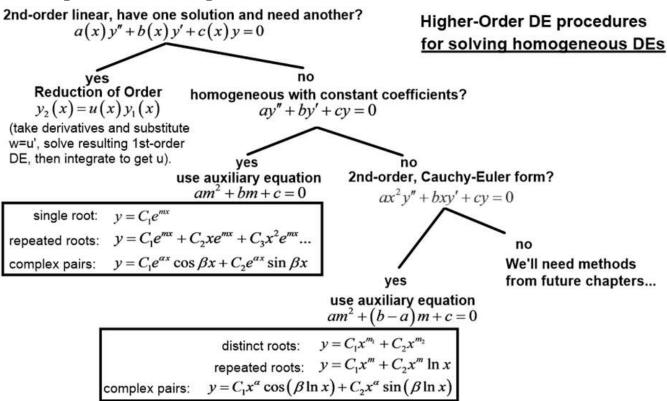
Ch 1/2: 1st order solving methods



Ch 4: Higher-order solving methods



Check if solutions are Linearly Independent (form a fundamental solution set) using Wronskian:

$$W(f_1(x), f_2(x) \dots f_n(x)) = \begin{vmatrix} f_1 & f_2 & \dots & f_n \\ f_1' & f_2' & \dots & f_n' \\ \dots & \dots & \dots & \dots \\ f_1^{(n-1)} & f_2^{(n-1)} & \dots & f_n^{(n-1)} \end{vmatrix}$$

Linearly Independent if Wronskian is non-zero:

Linear non-homogeneous DE with constant coefficients?

ay'' + by' + cy = g(x)

(can be higher order too)

yes **Undetermined Coefficients** use table to find form ...

Variation of Parameters assume terms have same form as homogeneous solution multiplied by u functions:

g(x)Form of yp 1. 1 (any constant) A Ax + B2. 5x + 73. $3x^2 - 2$ $Ax^2 + Bx + C$ $Ax^3 + Bx^2 + Cx + E$ 4. $x^3 - x + 1$ $A\cos 4x + B\sin 4x$ 5. $\sin 4x$ 1 $A\cos 4x + B\sin 4x$ 6. $\cos 4x$ 7. e^{5x} Aess $(Ax + B)e^{5x}$ 8. $(9x-2)e^{5x}$ 9. x^2e^{5x} $(Ax^2 + Bx + C)e^{5x}$ 10. $e^{3x} \sin 4x$ $Ae^{3x}\cos 4x + Be^{3x}\sin 4x$ 11. $5x^2 \sin 4x$ $(Ax^{2} + Bx + C) \cos 4x + (Ex^{2} + Fx + G) \sin 4x$ 12. $xe^{3x}\cos 4x$ $(Ax + B)e^{3x}\cos 4x + (Cx + E)e^{3x}\sin 4x$

if a y_p term matches a y_c term (use smallest *n* that isn't absorbed) = 'absorbed' so multiply term by xⁿ

...take derivatives, plug into DE and solve for constants, then: $y = y_C + y_P$

Ch 5: Laplace methods Derivatives...

$$\begin{split} \chi\{0\} = 0 \\ \chi\{y(t)\} = Y(s) \\ \chi\{y'(t)\} = sY(s) - y(0) \\ \chi\{y''(t)\} = s^2Y(s) - sy(0) - y'(0) \\ \chi\{y'''(t)\} = s^3Y(s) - s^2y(0) - sy'(0) - y(0) \\ \chi\{t^n f(t)\} = (-1)^n \frac{d^n}{ds^n} [F(s)] \\ \chi\{t^n f(t)\} = F(s-a) \\ \chi^{-1}\{F(s-a)\} = e^{at} f(t) \\ \chi^{-1}\{e^{-as}F(s)\} = f(t-a)u(t-a) \\ \chi\{g(t)u(t-a)\} = e^{-as} \chi\{g(t+a)\} \\ \end{split}$$

no

 $y_{c} = C_{1}y_{1} + C_{2}y_{2}$

 $y_{p} = u_{1}(x)y_{1} + u_{2}(x)y_{2}$ Divide by leading term to get $f(x) = \frac{g(x)}{a_{n}(x)}$

then find *u* function derivatives with Cramer's rule:

$$u_{1}' = \frac{\begin{vmatrix} 0 & y_{2} \\ f(x) & y_{2}' \\ \end{vmatrix}}{\begin{vmatrix} y_{1} & y_{2} \\ y_{1}' & y_{2}' \end{vmatrix}}, \quad u_{2}' = \frac{\begin{vmatrix} y_{1} & 0 \\ y_{1}' & f(x) \\ \end{vmatrix}}{\begin{vmatrix} y_{1} & y_{2} \\ y_{1}' & y_{2}' \end{vmatrix}}$$

then integrate to find *u* functions, and solution:

$$u_{1} = \int u'_{1} dx, \qquad u_{2} = \int u'_{2} dx$$
$$y_{p} = u_{1}y_{1} + u_{2}y_{2}$$
$$y = y_{C} + y_{p}$$

f(t)	$\mathscr{L}{f(t)} = F(s)$
1. 1	$\frac{1}{s}$
2. <i>t</i>	$\frac{1}{s^2}$
3. <i>tⁿ</i>	$\frac{n!}{s^{n+1}}$, <i>n</i> a positive integer
4. $t^{-1/2}$	$\sqrt{\frac{\pi}{s}}$
5. $t^{1/2}$	$\frac{\sqrt{\pi}}{2s^{3/2}}$
6. t^{α}	$\frac{\Gamma(\alpha+1)}{s^{\alpha+1}}, \alpha > -1$
7. sin <i>kt</i>	$\frac{k}{s^2 + k^2}$
8. cos <i>kt</i>	$\frac{s}{s^2 + k^2}$
9. $\sin^2 kt$	$\frac{2k^2}{s(s^2+4k^2)}$
$0. \cos^2 kt$	$\frac{s^2 + 2k^2}{s(s^2 + 4k^2)}$
11. e^{at}	$\frac{1}{s-a}$
12. sinh <i>kt</i>	$\frac{k}{s^2 - k^2}$
13. cosh <i>kt</i>	$\frac{s}{s^2 - k^2}$
14. $\sinh^2 kt$	$\frac{2k^2}{s(s^2-4k^2)}$
15. $\cosh^2 kt$	$\frac{s^2 - 2k^2}{s(s^2 - 4k^2)}$
16. <i>te^{at}</i>	$\frac{1}{(s-a)^2}$
17. $t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$, <i>n</i> a positive integer
18. $e^{at} \sin kt$	$\frac{k}{(s-a)^2+k^2}$
19. $e^{at} \cos kt$	$\frac{s-a}{(s-a)^2+k^2}$

f(t)	$\mathscr{L}{f(t)} = F(s)$
20. $e^{at} \sinh kt$	$\frac{k}{(s-a)^2 - k^2}$
21. $e^{at} \cosh kt$	$\frac{s-a}{(s-a)^2-k^2}$
22. <i>t</i> sin <i>kt</i>	$\frac{2ks}{(s^2+k^2)^2}$
23. t cos kt	$\frac{s^2 - k^2}{(s^2 + k^2)^2}$
24. $\sin kt + kt \cos kt$	$\frac{2ks^2}{(s^2+k^2)^2}$
25. $\sin kt - kt \cos kt$	$\frac{2k^3}{(s^2+k^2)^2}$
26. <i>t</i> sinh <i>kt</i>	$\frac{2ks}{(s^2 - k^2)^2}$
27. <i>t</i> cosh <i>kt</i>	$\frac{s^2 + k^2}{(s^2 - k^2)^2}$
$28. \ \frac{e^{at} - e^{bt}}{a - b}$	$\frac{1}{(s-a)(s-b)}$
$29. \ \frac{ae^{at} - be^{bt}}{a - b}$	$\frac{s}{(s-a)(s-b)}$
30. $1 - \cos kt$	$\frac{k^2}{s(s^2+k^2)}$
31. $kt - \sin kt$	$\frac{k^3}{s^2(s^2+k^2)}$
32. $\frac{a\sin bt - b\sin at}{ab(a^2 - b^2)}$	$\frac{1}{(s^2 + a^2)(s^2 + b^2)}$
$33. \ \frac{\cos bt - \cos at}{a^2 - b^2}$	$\frac{s}{(s^2+a^2)(s^2+b^2)}$
34. sin <i>kt</i> sinh <i>kt</i>	$\frac{2k^2s}{s^4+4k^4}$
35. $\sin kt \cosh kt$	$\frac{k(s^2 + 2k^2)}{s^4 + 4k^4}$
36. $\cos kt \sinh kt$	$\frac{k(s^2 - 2k^2)}{s^4 + 4k^4}$
37. $\cos kt \cosh kt$	$\frac{s^3}{s^4 + 4k^4}$
38. $J_0(kt)$	$\frac{1}{\sqrt{s^2 + k^2}}$

f(t)	$\mathscr{L}{f(t)} = F(s)$
$39. \ \frac{e^{bt} - e^{at}}{t}$	$\ln \frac{s-a}{s-b}$
40. $\frac{2(1-\cos kt)}{t}$	$\ln\frac{s^2 + k^2}{s^2}$
41. $\frac{2(1-\cosh kt)}{t}$	$\ln \frac{s^2 - k^2}{s^2}$
42. $\frac{\sin at}{t}$	$\arctan\left(\frac{a}{s}\right)$
43. $\frac{\sin at \cos bt}{t}$	$\frac{1}{2}\arctan\frac{a+b}{s} + \frac{1}{2}\arctan\frac{a-b}{s}$
$44. \ \frac{1}{\sqrt{\pi t}}e^{-a^2/4t}$	$\frac{e^{-a\sqrt{s}}}{\sqrt{s}}$
45. $\frac{a}{2\sqrt{\pi t^3}}e^{-a^2/4t}$	$e^{-a\sqrt{s}}$
46. $\operatorname{erfc}\left(\frac{a}{2\sqrt{t}}\right)$	$\frac{e^{-a\sqrt{s}}}{s}$
47. $2\sqrt{\frac{t}{\pi}}e^{-a^2/4t} - a \operatorname{erfc}\left(\frac{a}{2\sqrt{t}}\right)$	$\frac{e^{-a\sqrt{s}}}{s\sqrt{s}}$
48. $e^{ab}e^{b^2t}\operatorname{erfc}\left(b\sqrt{t}+\frac{a}{2\sqrt{t}}\right)$	$\frac{e^{-a\sqrt{s}}}{\sqrt{s}(\sqrt{s}+b)}$
$49e^{ab}e^{b^2t}\operatorname{erfc}\left(b\sqrt{t} + \frac{a}{2\sqrt{t}}\right)$	$\frac{be^{-a\sqrt{s}}}{s(\sqrt{s}+b)}$
+ erfc $\left(\frac{a}{2\sqrt{t}}\right)$	
50. $e^{at}f(t)$	F(s-a)
51. $U(t-a)$	$\frac{e^{-as}}{s}$
52. $f(t-a)\mathcal{U}(t-a)$	$e^{-as}F(s)$
53. $g(t)\mathcal{U}(t-a)$	$e^{-as}\mathscr{L}\left\{g(t+a)\right\}$
54. $f^{(n)}(t)$	$s^{n}F(s) - s^{(n-1)}f(0) - \cdots - f^{(n-1)}(0)$
55. $t^n f(t)$	$(-1)^n \frac{d^n}{ds^n} F(s)$
$56. \int_0^t f(\tau)g(t-\tau)d\tau$	F(s)G(s)
57. $\delta(t)$	1
58. $\delta(t-t_0)$	e^{-st_0}

Ch 8: Systems of Differential Equations

Homogeneous systems...

Finding eigenvalues: $\left| \overrightarrow{A} - \lambda \overrightarrow{I} \right| = 0$

Finding eigenvector for an eigenvalue: $(\overrightarrow{A} - \lambda \overrightarrow{I})\overrightarrow{K} = \overrightarrow{0}$

Distinct real eigenvalues:
$$\overrightarrow{X}_{C} = C_1 \begin{bmatrix} k_{11} \\ k_{21} \end{bmatrix} e^{\lambda_1 t} + C_2 \begin{bmatrix} k_{12} \\ k_{22} \end{bmatrix} e^{\lambda_2 t}$$

Repeated real eigenvalues: find 2nd eigenvalue using $\begin{pmatrix} \overrightarrow{A} - \lambda \overrightarrow{I} \end{pmatrix} \overrightarrow{P} = \overrightarrow{K}$ $\overrightarrow{X}_{C} = C_{1} \begin{bmatrix} k_{1} \\ k_{2} \end{bmatrix} e^{\lambda t} + C_{2} \left(\begin{bmatrix} k_{1} \\ k_{2} \end{bmatrix} t e^{\lambda t} + \begin{bmatrix} p_{1} \\ p_{2} \end{bmatrix} e^{\lambda t} \right)$

Complex conjugate eigenvalues:

use positive version
$$\lambda = \alpha + \beta i$$
 to find eigenvector $\overrightarrow{K} = \begin{bmatrix} a+bi\\c+di \end{bmatrix}$
 $\overrightarrow{B_1} = \operatorname{Re} \overrightarrow{K} = \begin{bmatrix} a\\c \end{bmatrix}$ $\overrightarrow{B_2} = \operatorname{Im} \overrightarrow{K} = \begin{bmatrix} b\\d \end{bmatrix}$
 $\overrightarrow{X_C} = C_1 \left(\overrightarrow{B_1} \cos \beta t - \overrightarrow{B_2} \sin \beta t\right) e^{\alpha t} + C_2 \left(\overrightarrow{B_2} \cos \beta t + \overrightarrow{B_1} \sin \beta t\right) e^{\alpha t}$

Non-Homogeneous systems...

$$\overrightarrow{X'} = \overrightarrow{A} \overrightarrow{X} + \overrightarrow{F}$$
Method of Variation of Parameters: $\overrightarrow{\Phi}$ = fundamental matrix (from $\overrightarrow{X_C}$) $\overrightarrow{X_P} = \overrightarrow{\Phi} \int \overrightarrow{\Phi}^{-1} \overrightarrow{F} dt$

$$\overrightarrow{\Phi}^{-1} = \frac{1}{\det \Phi} \overrightarrow{\Phi}^{T}$$

$$\overrightarrow{\Phi}^{T} = transpose = for 2x2 reverse elements on diagonal, negate everything else$$

<u>Solving with initial condition</u>: $\overrightarrow{X} = \overrightarrow{\Phi}(t)\overrightarrow{\Phi}^{-1}(t_0)\overrightarrow{X}_0 + \overrightarrow{\Phi}\int_{t_0}^t \overrightarrow{\Phi}^{-1}(s)\overrightarrow{F}(s)ds$

$\overrightarrow{X}_{P} = \begin{bmatrix} \text{function from table to match forms of terms of } F \\ \text{function from table to match forms of terms of } F \end{bmatrix}$

(must be the same form for all rows – so selected terms must cover all terms in all rows of F)

g(x)	Form of y_p
1. 1 (any constant)	A
2. $5x + 7$	Ax + B
3. $3x^2 - 2$	$Ax^2 + Bx + C$
4. $x^3 - x + 1$	$Ax^3 + Bx^2 + Cx + E$
5. $\sin 4x$	$A\cos 4x + B\sin 4x$
6. $\cos 4x$	$A\cos 4x + B\sin 4x$
7. e^{5x}	Ae^{5x}
8. $(9x-2)e^{5x}$	$(Ax+B)e^{5x}$
9. $x^2 e^{5x}$	$(Ax^2 + Bx + C)e^{5x}$
10. $e^{3x} \sin 4x$	$Ae^{3x}\cos 4x + Be^{3x}\sin 4x$
11. $5x^2 \sin 4x$	$(Ax^{2} + Bx + C)\cos 4x + (Ex^{2} + Fx + G)\sin 4x$
12. $xe^{3x}\cos 4x$	$(Ax + B)e^{3x}\cos 4x + (Cx + E)e^{3x}\sin 4x$

Then take derivative, plug into system of DEs, and solve for constants.

(Note: you need to multiply by extra t_s if terms match any terms in X_c)