DiffEq - Ch 4 - Required Practice

4.1

\#1. The given family of functions is the general solution of the differential equation on the indicated interval. Find a member of the family that is a solution of the initial-value problem.

$$
\begin{aligned}
& y=C_{1} e^{x}+C_{2} e^{-x}, \quad(-\infty, \infty) \\
& y^{\prime \prime}-y=0, \quad y(0)=0, \quad y^{\prime}(0)=1
\end{aligned}
$$

\#2. The given family of functions is the general solution of the differential equation on the indicated interval. Find a member of the family that is a solution of the initial-value problem.
$y=C_{1} x+C_{2} x \ln x, \quad(0, \infty) ;$
$x^{2} y^{\prime \prime}-x y^{\prime}+y=0, \quad y(1)=3, \quad y^{\prime}(1)=-1$

Name: \qquad
\#3. Determine whether the given set of functions is linearly independent on the interval $(-\infty, \infty)$.
$f_{1}(x)=x, \quad f_{2}(x)=x^{2}, \quad f_{3}(x)=4 x-3 x^{2}$
\#4. Determine whether the given set of functions is linearly independent on the interval $(-\infty, \infty)$.
$f_{1}(x)=0, \quad f_{2}(x)=x, \quad f_{3}(x)=e^{x}$
\#5. Determine whether the given set of functions is linearly independent on the interval $(-\infty, \infty)$.
$f_{1}(x)=1+x, \quad f_{2}(x)=x, \quad f_{3}(x)=x^{2}$
\#6. Verify that the given functions form a fundamental set of solutions of the differential equation on the indicated interval. Then form the general solution.

$$
y^{\prime \prime}-y^{\prime}-12 y=0 ; \quad e^{-3 x}, e^{4 x},(-\infty, \infty)
$$

\#7. Verify that the given functions form a fundamental set of solutions of the differential equation on the indicated interval. Then form the general solution.
$y^{\prime \prime}-2 y^{\prime}+5 y=0 ; \quad e^{x} \cos 2 x, e^{x} \sin 2 x,(-\infty, \infty)$
\#8. Verify that the given functions form a fundamental set of solutions of the differential equation on the indicated interval. Then form the general solution.
$x^{2} y^{\prime \prime}-6 x y^{\prime}+12 y=0 ; \quad x^{3}, x^{4},(0, \infty)$
\#1. The indicated function is a solution of the given differential equation (no need to verify). Use reduction of order to find a second solution.

$$
y^{\prime \prime}-4 y^{\prime}+4 y=0 ; \quad y_{1}=e^{2 x}
$$

\#2. The indicated function is a solution of the given differential equation (no need to verify). Use reduction of order to find a second solution.

$$
y^{\prime \prime}+16 y=0 ; \quad y_{1}=\cos (4 x)
$$

\#3. The indicated function is a solution of the given differential equation (no need to verify). Use reduction of order to find a second solution.
$9 y^{\prime \prime}-12 y^{\prime}+4 y=0 ; \quad y_{1}=e^{\left(\frac{2}{3} x\right)}$
\#4. The indicated function is a solution of the given differential equation (no need to verify). Use reduction of order to find a second solution.

$$
x^{2} y^{\prime \prime}-7 x y^{\prime}+16 y=0 ; \quad y_{1}=x^{4}
$$

\#5. The indicated function is a solution of the given differential equation (no need to verify). Use reduction of order to find a second solution.
$x y^{\prime \prime}+y^{\prime}=0 ; \quad y_{1}=\ln x$

4.3

\#1. Find the general solution of the differential equation.
$4 y^{\prime \prime}+y^{\prime}=0$
\#3. Find the general solution of the differential equation.
$12 y^{\prime \prime}-5 y^{\prime}-2 y=0$
\#2. Find the general solution of the differential equation.

$$
y^{\prime \prime}+8 y^{\prime}+16 y=0
$$

\#4. Find the general solution of the differential equation.
$y^{\prime \prime}+9 y=0$
\#5. Find the general solution of the differential equation.
$y^{\prime \prime}-4 y^{\prime}+5 y=0$
\#7. Find the general solution of the differential equation.
$y^{\prime \prime \prime}-5 y^{\prime \prime}+3 y^{\prime}+9 y=0$
\#6. Find the general solution of the differential equation.
$3 y^{\prime \prime}+2 y^{\prime}+y=0$
\#8. Find the general solution of the differential equation.
$y^{\prime \prime \prime}+3 y^{\prime \prime}+3 y^{\prime}+y=0$
\#9. Solve the initial-value problem.

$$
\frac{d^{2} y}{d t^{2}}-4 \frac{d y}{d t}-5 y=0, \quad y(1)=0, \quad y^{\prime}(1)=2
$$

\#10. Solve the initial-value problem.
$y^{\prime \prime}+y^{\prime}+2 y=0, \quad y(0)=0, y^{\prime}(0)=0$
\#11. Solve the initial-value problem.
$y^{\prime \prime \prime}+12 y^{\prime \prime}+36 y^{\prime}=0, \quad y(0)=0, \quad y^{\prime}(0)=1, \quad y^{\prime \prime}(0)=-7$
\#1. Solve the differential equation using the method of undermined coefficients.
$y^{\prime \prime}+3 y^{\prime}+2 y=6$
\#2. Solve the differential equation using the method of undermined coefficients.
$y^{\prime \prime}-10 y^{\prime}+25 y=30 x+3$
\#3. Solve the differential equation using the method of undermined coefficients.
$\frac{1}{4} y^{\prime \prime}+y^{\prime}+y=x^{2}-2 x$
\#4. Solve the differential equation using the method of undermined coefficients.

$$
y^{\prime \prime}+3 y=-48 x^{2} e^{3 x}
$$

\#5. Solve the differential equation using the method of undermined coefficients.
$y^{\prime \prime}-16 y=2 e^{4 x}$
\#6. Solve the differential equation using the method of undermined coefficients.
$y^{\prime \prime}+y=2 x \sin x$
\#7. Solve the initial-value problem.
$5 y^{\prime \prime}+y^{\prime}=-6 x, \quad y(0)=0, \quad y^{\prime}(0)=-10$

4.6 (we skip 4.5)

\#1. Solve the differential equation using the method of variation of parameters.
$y^{\prime \prime}+y=\sec x$
\#2. Solve the differential equation using the method of variation of parameters.

$$
y^{\prime \prime}+y=\sin x
$$

\#3. Solve the differential equation using the method of variation of parameters.
$y^{\prime \prime}-9 y=\frac{9 x}{e^{3 x}}$
\#4. Solve the differential equation using the method of variation of parameters.
$y^{\prime \prime}+3 y^{\prime}+2 y=\frac{1}{1+e^{x}}$
\#5. Solve the initial value problem using variation of parameters.
$4 y^{\prime \prime}-y=x e^{\left(\frac{1}{2} x\right)}$
\#1. Solve the differential equation.
$x^{2} y^{\prime \prime}-2 y=0$
\#3. Solve the differential equation.
$x^{2} y^{\prime \prime}-3 x y^{\prime}-2 y=0$
\#2. Solve the differential equation.
$x^{2} y^{\prime \prime}+5 x y^{\prime}+3 y=0$
\#4. Solve the differential equation by variation of parameters.
$x y^{\prime \prime}-4 y^{\prime}=x^{4}$
\#5. Use the substitution $x=e^{t}$ to transform the given Cauchy-Euler equation to a differential equation with constant coefficients, then solve.

$$
x^{2} y^{\prime \prime}+9 x y^{\prime}-20 y=0
$$

\#6. Use the substitution $x=e^{t}$ to transform the given Cauchy-Euler equation to a differential equation with constant coefficients, then solve.
$x^{2} y^{\prime \prime}+10 x y^{\prime}+8 y=x^{2}$

Diffeq Ch4 Test Review

\#1. Given one solution to the differential equation (no need to verify), use reduction of order to find a second solution.
$y^{\prime \prime}-25 y=0 ; \quad y_{1}=e^{5 x}$
\#2. Given one solution to the differential equation (no need to verify), use reduction of order to find a second solution.
$9 y^{\prime \prime}-12 y^{\prime}+4 y=0 ; \quad y_{1}=e^{\left(\frac{2}{3} x\right)}$
\#3. Use a Wronskian to determine if the following set of functions is linearly independent on the interval $(0, \infty)$
$f_{1}(x)=e^{4 x}, \quad f_{2}(x)=e^{2 x}$
\#4. Use a Wronskian to determine if the following set of functions is linearly independent on the interval $(0, \infty)$
$f_{1}(x)=x, \quad f_{2}(x)=x-1, \quad f_{3}(x)=x+3$
\#5. Solve the differential equation.

$$
y^{\prime \prime}-2 y^{\prime}-2 y=0
$$

\#6. Solve the differential equation.
$2 y^{\prime \prime}+2 y^{\prime}+3 y=0$
\#7. Solve the differential equation.
$y^{\prime \prime \prime}-5 y^{\prime \prime}+3 y^{\prime}+9 y=0$
\#8. Solve the differential equation by method of undetermined coefficients (table method).

$$
y^{\prime \prime}+4 y=3 \sin (2 x)
$$

\#9. Solve the differential equation by method of undetermined coefficients (table method).

$$
y^{\prime \prime}+8 y^{\prime}+16 y=2 x^{2}-3, \quad y(0)=\frac{247}{64}, \quad y^{\prime}(0)=\frac{-153}{8}
$$

\#10. Solve the differential equation by method of undetermined coefficients (table method).
$y^{\prime \prime}-16 y=2 e^{4 x}$
\#11. Solve the differential equation by variation of parameters (Wronskian method).
$y^{\prime \prime}-9 y=\frac{9 x}{e^{3 x}}$
\#12. Solve the differential equation by variation of parameters (Wronskian method).
$y^{\prime \prime}+y=\sec ^{3} x$
\#13. Solve this Cauchy-Euler form differential equation using the Cauchy-Euler procedure for the homogeneous solution. Then use the variation of parameters (Wronskian method) to find the particular solution. Finally, join the solutions to produce the general solution.
$2 x^{2} y^{\prime \prime}+5 x y^{\prime}+y=x^{2}-x$
\#14. Solve this Cauchy-Euler form differential equation using the Cauchy-Euler procedure for the homogeneous solution. Then use the variation of parameters (Wronskian method) to find the particular solution. Finally, join the solutions to produce the general solution.
$x y^{\prime \prime}-4 y^{\prime}=x^{4}$

