DiffEq - Ch 1-2 - Required Practice

1.1

State the order of the given ordinary differential equation. Determine whether the equation is linear or nonlinear.
\#1. $(1-x) y^{\prime \prime}-4 x y^{\prime}+5 y=\cos x$
\#2. $t^{5} y^{(4)}-t^{3} y^{\prime \prime}+6 y=0$
\#3. $\frac{d^{2} y}{d x^{2}}=\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}$
\#4. $(\sin \theta) y^{\prime \prime \prime}-(\cos \theta) y^{\prime}=2$
(ii) is linear is x ?

Name: \qquad
\#5. Determine whether $\left(y^{2}-1\right) d x+x d y=0$
(i) is linear in y ?
\#6. Verify that $y=e^{-\frac{1}{2} x}$ is an explicit solution of $2 y^{\prime}+y=0$
(don't worry about interval of definition).
\#7. Verify that $y=x+4 \sqrt{x+2}$ is an explicit solution of $(y-x) y^{\prime}=y-x+8$
Then give at least one interval I of definition for this solutions.
\#8. Verify that $\ln \left(\frac{2 x-1}{x-1}\right)=t$ is an implicit
solution of $\frac{d x}{d t}=(x-1)(1-2 x)$
Then find at least one explicit solution $x=\phi(t)$, and graph this solution. Finally, give an interval I of definition for your solution.
\#9. Find values of m so that the function $y=x^{m}$ is a solution of $x y^{\prime \prime}+2 y^{\prime}=0$
\#10. Verify that the pair of functions...
$x=e^{-2 t}+3 e^{6 t}$
$y=-e^{-2 t}+5 e^{6 t}$
is a solution of the system of differential equations...

$$
\left\{\begin{array}{l}
\frac{d x}{d t}=x+3 y \\
\frac{d y}{d t}=5 x+3 y
\end{array}\right.
$$

1.2

\#1. $y=\frac{1}{1+C_{1} e^{-x}}$ is a one-parameter family of solutions of the first-order DE $y^{\prime}=y-y^{2}$. Find a solution of the first-order Initial Value Problem given initial condition $y(0)=-\frac{1}{3}$.
\#3. $x=C_{1} \cos t+C_{2} \sin t$ is a two-parameter family of solutions of the second-order DE $x^{\prime \prime}+x=0$. Find a solution of the second-order Initial Value Problem given initial conditions $x(0)=-1, \quad x^{\prime}(0)=8$.
\#2. $y=\frac{1}{x^{2}+c}$ is a one-parameter family of solutions of the first-order DE $y^{\prime}+2 x y^{2}=0$. Find a solution of the first-order Initial Value Problem given initial condition $y(2)=\frac{1}{3}$. Also, give the largest interval I over which the solution is defined.
\#4. $y=C_{1} e^{x}+C_{2} e^{-x}$ is a two-parameter family of solutions of the second-order DE $y^{\prime \prime}-y=0$. Find a solution of the second-order Initial Value Problem given initial conditions
$y(0)=1, \quad y^{\prime}(0)=2$.
\#5. Determine a region of the $x y$-plane for which the given differential equation would have a unique solution whose graph passes through a point $\left(x_{0}, y_{0}\right)$ in the region. $\quad \frac{d y}{d x}=y^{2 / 3}$
\#6. Determine whether the differential equation $y^{\prime}=\sqrt{y^{2}-9}$ possesses a unique solutions through the point $(1,4)$.

2.1

\#1. A direction field is given for the differential equation $\frac{d y}{d x}=x^{2}-y^{2}$:

Without using a calculator, sketch an approximate solution curve on the direction field that passes through each of the indicated points.
(a) $y(-2)=1$
(b) $y(3)=0$
(c) $y(0)=2$
(d) $y(0)=0$
\#2. For the differential equation $\frac{d y}{d x}=x+y$,
sketch a few isoclines $(f(x, y)=c)$ for $-5 \leq c \leq 5$. Then, construct a direction field by drawing lineal elements with the appropriate slope to match each isocline. Finally, use this rough direction field to sketch an approximate solution curve with the initial condition $y(0)=1$.
\#3. For the autonomous, first-order differential equation $\frac{d y}{d x}=y^{2}-3 y$, find the critical points and phase portrait. Then, classify each critical point as asymptotically stable, unstable, or semi-stable. Finally, sketch typical solution curves in the regions in the $x y$-plan determined by the graphs of the equilibrium solutions.

2.2

\#1. Solve by separation of variables: $\frac{d y}{d x}=\sin 5 x$
\#2. Solve by separation of variables:
$d x+e^{3 x} d y=0$
\#3. Solve by separation of variables: $x \frac{d y}{d x}=4 y$
\#5. Solve by separation of variables:
$y \ln x \frac{d x}{d y}=\left(\frac{y+1}{x}\right)^{2}$
(leave solution in implicit form)
\#4. Solve by separation of variables: $\frac{d y}{d x}=e^{3 x+2 y}$ (leave solution in implicit form)
\#6. Solve by separation of variables:
$\csc y d x+\sec ^{2} x d y=0$
\#7. Find an explicit solution of the given initialvalue problem: $\frac{d x}{d t}=4\left(x^{2}+1\right), \quad x\left(\frac{\pi}{4}\right)=1$

2.3

\#1. Find the general solutions of the differential equation $\frac{d y}{d x}=5 y$. Then, give the largest interval I over which the general solution is defined. Finally, determine whether there are any transient terms in the general solution.
\#2. Find the general solutions of the differential equation $x^{2} y^{\prime}+x y=1$. Then, give the largest interval I over which the general solution is defined. Finally, determine whether there are any transient terms in the general solution.
\#3. Find the general solutions of the differential equation $\frac{d r}{d \theta}+r \sec \theta=\cos \theta$. Then, give the largest interval I over which the general solution is defined. Finally, determine whether there are any transient terms in the general solution.
\#4. Solve the initial-value problem:
$x y^{\prime}+y=e^{x}, \quad y(1)=2$
\#5. Solve the initial-value problem:
$L \frac{d i}{d t}+R i=E, \quad i(0)=i_{0}$
$\left[L, R, E\right.$, and i_{0} are constants]
\#1. Determine whether the given differential equation is exact. If it is exact, then solve it. $(2 x-1) d x+(3 y+7) d y=0$
\#3. Determine whether the given differential equation is exact. If it is exact, then solve it. $\left(x^{2}-y^{2}\right) d x+\left(x^{2}-2 x y\right) d y=0$
\#4. Determine whether the given differential equation is exact. If it is exact, then solve it.

$$
\frac{d y}{d x}=\frac{x-y^{3}+y^{2} \sin x}{3 x y^{2}+2 y \cos x}
$$

\#2. Determine whether the given differential equation is exact. If it is exact, then solve it. $\left(2 x y^{2}-3\right) d x+\left(2 x^{2} y+4\right) d y=0$
\#5. Solve the initial-value problem:
$(x+y)^{2} d x+\left(2 x y+x^{2}-1\right) d y=0, \quad y(1)=1$
\#6. Solve the given differential equation by first finding an integrating factor, then using it to convert the differential equation to exact form: $\left(2 y^{2}+3 x\right) d x+(2 x y) d y=0$
\#1. Solve the Bernoulli form differential equation by using an appropriate substitution:
$x \frac{d y}{d x}+y=\frac{1}{y^{2}}$
\#2. Solve the Bernoulli form differential equation by using an appropriate substitution:

$$
\frac{d y}{d x}=y\left(x y^{3}-1\right)
$$

\#3. Solve the differential equation by using an appropriate substitution: $\frac{d y}{d x}=(x+y+1)^{2}$
\#4. Solve the differential equation by using an appropriate substitution: $\frac{d y}{d x}=\tan ^{2}(x+y)$
\#1. Use Euler's method to obtain a four-decimal approximation of $y(0.5)$ if $y(0)=0$ and $y^{\prime}=e^{-y}$. Use x-increments of 0.1.
\#2. Use Euler's method to obtain a four-decimal approximation of $y(1.5)$ if $y(1)=1$ and $y^{\prime}=x y^{2}-\frac{y}{x}$. Use x -increments of 0.1 .

Diff Eq Ch1-2 Test Review

\#1. Classify each differential equation as (b) $\frac{d y}{d x}=\frac{1}{y-x}$ 'separable', 'exact', 'linear' or 'Bernoulli', or 'composite' form. Some equations may be more than one kind. Do not solve the differential equations, just classify them so you can identify which methods could use used to solve them.
(a) $\frac{d y}{d x}=\frac{x-y}{x}$
\#1 continued...
(c) $(x+1) \frac{d y}{d x}=-y+10$
(d) $\frac{d y}{d x}=\frac{1}{x(x-y)}$
\#1 continued...
(e) $\frac{d y}{d x}=\frac{y^{2}+y}{x^{2}+x}$
(f) $\frac{d y}{d x}=5 y+y^{2}$
\#1 continued...
(g) $y d x=\left(y-x y^{2}\right) d y$
(h) $x y y^{\prime}+y^{2}=2 x$
\#1 continued...
(i) $y d x+x d y=0$
(j) $\left(x^{2}+\frac{2 y}{x}\right) d x=\left(3-\ln \left(x^{2}\right)\right) d y$
\#1 continued...
(k) $\frac{y}{x^{2}} \frac{d y}{d x}+e^{\left(2 x^{3}+y^{2}\right)}=0$

For \#2 and \#3, Given the autonomous, first-order differential equation, find the critical points and phase portrait. Then, classify each critical point as asymptotically stable, unstable, or semi-stable. Finally, sketch typical solution curves in the regions in the $x y$-plan determined by the graphs of the equilibrium solutions.
\#2. $\frac{d y}{d x}=y^{2}-3 y$
\#3. $\frac{d y}{d x}=y^{2}-y^{3}$
\#4. Solve and write the solution in explicit form:
$d y-(y-1)^{2} d x=0$
\#6. Solve and write the solution in explicit form:
$3 \frac{d y}{d x}+12 y=4$
\#7. Solve and write the solution in explicit form: $x \frac{d y}{d x}-y=x^{2} \sin x$
\#5. Solve and write the solution in explicit form:
$\csc y d x+\sec ^{2} x d y=0$
\#8. Solve and write the solution in implicit form:
$\left(3 x^{2} y+e^{y}\right) d x+\left(x^{3}+x e^{y}-2 y\right) d y=0$
\#9. Solve (leave answer in implicit form):
$\frac{d y}{d x}=\frac{1-x-y}{x+y}$
\#10. Find the particular solution of the initial value problem (you can leave your answer in implicit form):
$\left(\frac{3 y^{2}-t^{2}}{y^{5}}\right) \frac{d y}{d t}+\frac{t}{2 y^{4}}=0 ; \quad y(1)=1$
\#11. Solve and write the solution in explicit form:
$\frac{d y}{d x}=y\left(x y^{3}-1\right)$
\#12. Solve and write the solution in explicit form: $t^{2} \frac{d y}{d t}+y^{2}=t y$

