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Throughout this packet there will be places for you to show your work.  These are marked by boxes with cross

edges like this:   

 

This unit is graded and to get full credit, you need to complete each of the numbered steps, in order, and then 

each solution box like this throughout the packet with your solutions.

Step 1)  Solve example #1 using manual methods

 

  

Throughout this packet there will be places for you to show your work.  These are marked by boxes with cross

nd to get full credit, you need to complete each of the numbered steps, in order, and then 

box like this throughout the packet with your solutions. 

using manual methods (Solving a 1st-order single differential equation)

Throughout this packet there will be places for you to show your work.  These are marked by boxes with cross-hatched 

nd to get full credit, you need to complete each of the numbered steps, in order, and then to fill in 

order single differential equation):   

 

 



Step 2)  Install OCTAVE and verify it is working properly 

Step 2a)  If you haven’t already installed OCTAVE, obtain the installer program for your operating system from the GNU 
OCTAVE project open-source website and install it on your computer.    
- If you are using your own computer:  Search online for ‘GNU Octave’ to find the open-source project’s page, click 
‘download’ and download an installer program for your computer (probably the latest Windows-64 installer). 
- If you are using a school laptop: talk to your teacher about how to get access to OCTAVE. 
 

Step 2b)  Open OCTAVE and locate your file directory. 

 
 
Step 2c)  Download two starting ‘test’ files from the mrfelling.com website to your computer’s OCTAVE file directory  
and use them to test your OCTAVE installation.   
- Locate your local computer OCTAVE file directory by looking at the file location indicated at the top of the OCTAVE 
program window. 
- Open a web browser and browse to:  mrfelling.com/octave 
- Right-click on each of the two test files (testfunction.m and testscript.m) and download them into your local 
computer’s OCTAVE file directory. 
 
Step 2d) Test your OCTAVE installation to make sure it is set up properly and functioning. 
- In the OCTAVE File Browser window, double-click on ‘testfunction.m’.  This should open it in your editor window. 
- In the OCTAVE File Browser window, double-click on ‘testscript.m’.  This should add it to your editor window and 
display this file. 
- With the testscript.m file displaying in your editor window, click the ‘save file and run’ button (looks like a gear). 
- A new window should popup which eventually displays a spiral.  If this displays, you are good to go! 
If this doesn’t work, ask your teacher for help before proceeding.   
 



Step 3)  Make new copies of the test files and edit them to use OCTAVE to solve the differential 

equation in Example #1 

Step 3a)  Make new copies of the test files for this problem: 
- Click the tabs at the top (if needed) to display the ‘testscript.m’ file, then click ‘File’ > ‘Save File As…’ to create a copy 
called ‘example1script.m’ in your file directory.   
- Click the tabs at the top of the Editor window to switch to the  ‘testfunction.m’ file, then click ‘File’ > ‘Save File As…’ to 
create a copy called ‘example1function.m’ in your file directory.   
You should now be editing the two new files in your Editor. 
 
 
Step 3b) Edit the example1function.m file to make it represent the differential equation in Example #1.   
- Replace what is there with the following: 

       function returnValue = example1function (x, y) 
              returnValue=x-2*y; 
         endfunction 
-  Save this file by clicking ‘File’ then ‘Save File’ (Note: the name of the function in the first executable line of this file 
must match the name of the file). 
 
 
Step 3c) Edit the example1script.m file to make it generate a function curve plot for Example #1.   
- Replace what is there with the following: 

       clear all 
       clc 
       xrange=[0,10]; 
       initialy=3; 
       [x,y]=ode45(@example1function,xrange,initialy); 
       plot(x,y) 
       ylabel('Y') 
       xlabel('X') 
-  Save this file by clicking ‘File’ then ‘Save File’. 

 
 

 

Step 4)  Understand what these new files are doing… 

 

 



 

Step 5)  Run the OCTAVE program 

Step 5a) Now we’ll execute the analysis by clicking the ‘Save File and Run’ button (in the Editor window, it looks like a 

gear).  You must have the ‘script’ file displaying in the Editor window when you click the run button.  The result should 

be a plot window displaying the solution curve (it is a separate window which if already open might be covered up by 

the OCTAVE programming environment window). 

If your program did not display the solution function curve, debug your program.  In the Editor window, at the bottom, 

there are tabs to switch between the Editor and Command Window:          

Switch to the Command Window.  If the program is not running, it will display error messages here which can help you 

pinpoint where the error might be located.   

If you are unable to debug your program, ask your teacher for help. 

Once your program runs successfully and displays a graph of the solution function curve, sketch the graph produced by 

OCTAVE below.  It should roughly match the curve you graphed when you solved Example #1 by hand earlier. 

 

 

 

 

 

 

 

 

 

 

 



Step 6)  Example #2: Now use OCTAVE to solve a new 2nd-order homogeneous differential equation   

 

OCTAVE ode45 can only handle first-order DEs so we need to express this as a system of first-order DEs first: 

Step 6a)  Write the 2nd-order DE written as a system:    
0 1 0

4 0 0

x x x

x x x

   

    

 

 

Step 6b)  Understand how to format the system as an array and build the returnValue statement: 

 

 

  



Step 6c) Save new copies of the test files named ‘example2function.m’ and ‘example2script.m’ and change the function 
names to match.  (Repeat what you did in Step 3a to save new copies of the function and script files to edit).  
 
 
Step 6d) Change our example2function.m and example2script.m files to match this: 
 

 
 
 
Try to figure out what each of these lines in the two files is doing and why they are written this way  
     

 

 

Step 6e) Save and Run these files (gear button).    If needed debug your program.    Once it is running successfully, copy 

the solution curve graph below: 

 

 

 

 

 

 

 

 

 

 

 

 

  



Step 7)  Example #3: Now use OCTAVE to change things in Example 2 and quickly see effects   

One great thing about OCTAVE is that it doesn’t take much effort at all to add in things like a damping coefficient or a 

right-hand side driving function and quickly see the effects on the solution curve… 

 

Step 7a) Make new copies of the function and script files and update as follows: 

 

Step 7b) Sketch your solution curve: 

  



Your solution curve for Step 7b should be complicated at first because there is a mix of variation due to the natural 

resonance of the system along with the driving function, but the natural resonance eventually dies out, leaving only the 

driving function’s effect. 

Now let’s play a bit… 

Step 7c) What happens if we remove the driving function and just let the mass oscillate at it natural resonant frequency 

once perturbed?  Figure out what changes you need to make to the function file (you can keep reusing the same 

example3function.m and example3script.m files) to model this and sketch your new solution curve: 

 

 

 

 

 

 

 

 

 

Step 7d) Now take out the damping entirely but add the driving function back in.  Sketch the resulting solution curve: 

 

 

 

 

 

 

 

 

 

 

 

 

 



Step 7e) The natural resonant angular frequency of this system is 3.4278273.  Try changing the driving function to 

cos(3.4278273t) with no damping and sketch the resulting solution curve: 

 

 

 

 

 

 

 

 

This solution curve for Step 7e should be an oscillation which is growing without bound – destructive resonance! 

 

Step 7f) How much damping do you believe we need (there is no ‘correct’ answer, just how high do you think we should 

go until the oscillations are under control?      

         damping =   

 

Can you have too much damping?  Yes, it might be very expensive or maybe impossible physically to get large amounts 

of damping.  In the case of a bridge or the floor of a building you really don’t want oscillations, so the less movement, 

the better.  But adding damping to a physical system may increase the cost or the weight, so there is a limit. 

There are other kinds of systems which need control too.  Let’s say you are designing the control system for the cruise 

control for an automobile’s speed.  The driving function could represent the new ‘set speed’ which you want the speed 

to match.  If you have huge amounts of damping in the system, then it could take so long for the car to reach the 

equilibrium speed that the cruise control is useless.  On the other hand, you need some damping or the speed could 

oscillate around the desired speed, with wider and wider variations, causing loss of control of the vehicle. 



Step 8)  Example #4:  A Predator-Prey System   

 

 

Step 8a) Make new copies of the function and script file for example 4. 

 Step 8b) Select some values of the constants a, b, c, and d to model a particular ecosystem (in reality, if you were a 

biological researcher you could postulate initial values of these constants, run the simulation, and compare the resulting 

solution to the real world, adjusting these constants until they produced a model which matched the real-world data). 

 



   Step 8c) Update the example4function.m file: 

 

This is now a true system of two different differential equations (not a system which is representing a single higher-

order differential equation), so in the return array, each of components is the full expression of the 1st-order differential 

equation for the rabbits and the foxes.   The x array now has the two different independent values for the amount of 

rabbits and foxes, so x(1) is the first component of the x array which represents R (the number of rabbits) and x(2) is the 

second component of the x array which represents F (the number of foxes). 

   Step 8d) Update the example4script.m file: 

 

Step 8e) Sketch your population timeplot: 

 

 

 

 

 

 

 

 

This plot of populations vs. time should show that the rabbit and fox populations are increasing, then decreasing in a 

cyclical way. 



Step 8f) Another way to display the state of the ecosystem is with a Phase Diagram which plots the two dependent 

variables (foxes and rabbits) on the x and y axes.  To change the plot to this, modify your example4script.m file as 

follows to comment out the plot you just produced, and enable a phase diagram plot: 

 

Step 8g) Run OCTAVE and sketch the resulting 2D Phase Diagram for the rabbits/foxes ecosystem: 

 

 

 

 

 

 

 

 

You should see the phase state oscillating, but never reaching a point of stability.   



Step 8h) We could make the model more realistic by including two prey species and we could use logistic models for 

growth that account for food limitations in the environment for the prey… 

- Read through the following scenario:  With 3 species and time, we could now make plots for species vs. time (timeplot) 

and 3 different 2D phase diagrams comparing species populations, and we can even use the ‘plot3’ function to have 

OCTAVE produce a 3D phase diagram.   

- Save new copies of your function and script files (example 5) and see if you can make OCTAVE produce the following 

plots successfully: 

 

 

Step 8i) Run OCTAVE and sketch the resulting population timeplots for the ecosystem: 

 

 

 

 

 

 

 



Step 8j) Modify the script file to plot a 3D Phase Diagram showing the interaction of all the species: 

 

Step 8k) Run OCTAVE and sketch the resulting 3D Phase Diagram for the 3 species ecosystem: 

 

 

 

 

  



ASSESSMENT --------------------------------------------------------------------- 

Now it’s time to see if you can put all this together to solve a problem on your own.   Use what you’ve learned to use 

OCTAVE to graph the solution curve for the following problem: 

A 3-kg object is attached to a spring and hangs down, stretching the spring 0.392 meters.  Assume 

there is a damping force with 2  , and there is a forcing function of the form:    30cos 3f t t .  

Initial conditions:     0 0.2, 0 0.1x x    

The differential equation which models this is:   
2

25 10cos 3
3

x x x t     

ASSESSMENT #1)  Write the lines in your function.m file: 

 

 

 

 

 

 

 

 

ASSESSMENT #2)  Write the lines in your script.m file: 

 

 

 

 

 

 

 

 

 

 

 



ASSESSMENT #3)  Sketch the OCTAVE output solution curve: 

 

 

 

 

 

 

 

 

 

 

Done!   

If you’ve finished with time to spare, please ask for the follow-on ‘Murder at the Mayfair’ extra credit 

problem  

 


