
 



(…here is where we will go a slightly different direction from the classic published version of this problem  ) 
 

…and below that, Diff write Newton’s Law of Cooling:     m
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But the ambient temperature is a function of time (it changes abruptly at t = h when the body was moved.  So the 
differential equation that describes the warming/cooling of the body is actually: 
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The problem is, Diff doesn’t know the cooling constant, k, nor the time, h, when the body was moved. 
 
Let’s help Diff solve the case!  We can establish the k constant with the two temperature readings taken: 
 

         0 85, 0.5 84T T    

 
We can use OCTAVE to solve the differential equation.  If we set the initial condition to be T = 84 when time is t = -0.5, 
then we can use the differential equation solution curve to model how the body ‘warms up’ as we go backward in time. 
 
We will start by making a guess at the k constant, and see if the body temp, T warms up to 85 at t = 0.  If it doesn’t, we 
can adjust k and keep trying until we find the k that matches. 
 
But first, we will need some way to model the Unit Step Function.  In OCTAVE you can import libraries that have a 
number of additional useful functions, but this is cumbersome to do for a quick project, so we will just write our own 
function.  In the OCTAVE library, this function is called ‘heaviside’ (named for Oliver Heaviside – the person who is 
actually responsible for taking Maxwell’s 16 equations describing electromagnetism and expressing them in the form we 
have today using divergence and curl). 
 

 

Step 1)  Create a Unit Step Function called ‘heaviside’ 

Step 1a) Copy any of the function.m file to a new file called heavisidefunction.m. 

Step 1b) Change the code to the following… 

function y = heavisidefunction (x,h) 
  y=((x-h)>0)+0.5*((x-h)==0); 
endfunction 
 
 

 

 

 

 

 



Step 2)  Create the files to model the body warming differential equation and find k 

Step 2a) Copy any of the function.m and script.m files to create new files called DVmayfairfunction.m and 

DVmayfairscript.m. 

Step 2b) Change the coding to the following: 

DVmayfairfunction.m 

function returnValue = DVmayfairfunction (t, T) 
  k=0.2; 
  returnValue=k*(T-50); 
endfunction 
 

This first version of the function file doesn’t include the Unit Step Function, because we are only going to use it from 
time t = -0.5 to t = 0 when the ambient temperature is a constant 50.  We’re starting with our first guess at k to be 0.2. 
 

DVmayfairscript.m 

clear all 
clc 
trange=[-0.5,1]; 
initialT=84; 
[t,T]=ode45(@DVmayfairfunction,trange,initialT); 
plot(t,T) 
ylabel('Temperature, *F') 
xlabel('time (hrs)') 
 
This version of the script file just models from t = -0.5 to t = 0 hours, and starts the body at the last temperature 
measured of 84 (remember, time is positive backwards). 
 
Step 2c) Run the program and see if k is accurate.  When you run the simulation, the solution curve shows the body 
temperature warming up as time is running backwards.  If our value of k is correct, the body temperature will be 85 at t 
= 0.  (Our first guess is not accurate…k is something different from 0.2). 
 
Step 2d) Edit the function file to try different values of k until the body temp curve is as close as possible to 85 when t=0. 
Record your value of k here, and leave that value in your function file for the rest of this activity. 
 
     k = ________ 
 
 
 
 
 
 
 
 
 
 



Step 3)  Update the files to include the Heaviside function to model the entire night 

Step 3a) Change the coding to the following: 

DVmayfairfunction.m 

function returnValue = DVmayfairfunction (t, T) 
  k=(the value you determined to be correct) 
  h=2; 
  returnValue=k*(T-(50+20*heavisidefunction(t,h))); 
endfunction 
 
This new version of the function file includes the Unit Step Function to change the temperature at the time the body was 
moved).  We’ve introduced a new constant, h, which is the number of hours before 6:00AM when the body was moved 
into the freezer.  We will try adjusting this constant like we did the k constant.   
 

DVmayfairscript.m 

clear all 
clc 
trange=[0,10]; 
initialT=85; 
[t,T]=ode45(@DVmayfairfunction,trange,initialT); 
plot(t,T) 
ylabel('Temperature, *F') 
xlabel('time (hrs)') 
 
The only change here is we make the time range from 0 to 10 hours and change the initialT to 85 (so this is modeling 
from 6:00AM backwards in time). 
 
 
Step 3b) Now we can try different values for h and see how the body temperature changes.  But we need something to 
use to find time of death.  We can assume that the body temp was normal 98.6 *F at the time of death.  But unlike when 
we determined k, we don’t know the time when this temp of 98.6 occurred.  So the best we can do is to try some 
different values of h and record what time the body would have been at 98.6 to see if that provides more insight into 
who might have committed the murder.   
 
To collect our info, try each integer value of h from 2 to 12, run the model each time and on the plot, determine the time 
t when the body would have been 98.6 *F.  Fill in the table on the next page with your findings. 
 
 
 
 
 
 
 
 
 
 
 



h 
Time body was 

moved 
t when T = 98.6 Time of death 

7    

6    

5    

4    

3    

2    

 
 
Step 3c)  Only some of these trials are even possible.  For example, if you calculated a time of death that was after the 
body was moved, you should cross that off – the victim wouldn’t have allowed himself to be put in the freezer if he were 
still alive  
 

Step 4)  Solve the Murder! 

Okay, how does all this help us solve the murder?  Well, the classic problem also includes some additional information 
about possible suspects…. 
 

 
 

Can you solve it?  Which suspect does Diff want to question? 


