Diffeq-Ch 4 - Extra Practice

4.1

\#1b. The given family of functions is the general solution of the differential equation on the indicated interval. Find a member of the family that is a solution of the initial-value problem.

$$
\begin{aligned}
& y=C_{1} e^{4 x}+C_{2} e^{-x}, \quad(-\infty, \infty) \\
& y^{\prime \prime}-3 y^{\prime}-4 y=0, \quad y(0)=1, \quad y^{\prime}(0)=2
\end{aligned}
$$

\#2b. The given family of functions is the general solution of the differential equation on the indicated interval. Find a member of the family that is a solution of the initial-value problem.
$y=C_{1}+C_{2} \cos x+C_{3} \sin x, \quad(-\infty, \infty) ;$
$y^{\prime \prime \prime}+y^{\prime}=0, \quad y(\pi)=0, \quad y^{\prime}(\pi)=2, \quad y^{\prime \prime}(\pi)=-1$
\#3b. Determine whether the given set of functions is linearly independent on the interval $(-\infty, \infty)$.
$f_{1}(x)=5, \quad f_{2}(x)=\cos ^{2} x, \quad f_{3}(x)=\sin ^{2} x$
\#4b. Determine whether the given set of functions is linearly independent on the interval $(-\infty, \infty)$.

$$
f_{1}(x)=x, \quad f_{2}(x)=x-1, \quad f_{3}(x)=x+3
$$

\#5b. Determine whether the given set of functions is linearly independent on the interval $(-\infty, \infty)$.

$$
f_{1}(x)=e^{-3 x}, \quad f_{2}(x)=e^{4 x}
$$

\#6b. Verify that the given functions form a fundamental set of solutions of the differential equation on the indicated interval. Then form the general solution.

$$
4 y^{\prime \prime}-4 y^{\prime}+y=0 ; \quad e^{\frac{1}{2} x}, x e^{\frac{1}{2} x},(-\infty, \infty)
$$

\#7b. Verify that the given functions form a fundamental set of solutions of the differential equation on the indicated interval. Then form the general solution.
$x^{2} y^{\prime \prime}+x y^{\prime}+y=0 ; \quad \cos (\ln x), \sin (\ln x),(0, \infty)$
\#8b. Verify that the given functions form a fundamental set of solutions of the differential equation on the indicated interval. Then form the general solution.
$x^{3} y^{\prime \prime \prime}+6 x^{2} y^{\prime \prime}+4 x y^{\prime}-4 y=0 ; \quad x, x^{-2}, x^{-2} \ln x,(0, \infty)$

4.2

\#1b. The indicated function is a solution of the given differential equation (no need to verify). Use reduction of order to find a second solution.

$$
y^{\prime \prime}+2 y^{\prime}+y=0 ; \quad y_{1}=x e^{-x}
$$

\#2b. The indicated function is a solution of the given differential equation (no need to verify). Use reduction of order to find a second solution.

$$
y^{\prime \prime}+9 y=0 ; \quad y_{1}=\sin (3 x)
$$

\#3b. The indicated function is a solution of the given differential equation (no need to verify). Use reduction of order to find a second solution.
$6 y^{\prime \prime}+y^{\prime}-y=0 ; \quad y_{1}=e^{\left(\frac{1}{3} x\right)}$
\#4b. The indicated function is a solution of the given differential equation (no need to verify). Use reduction of order to find a second solution.
$x^{2} y^{\prime \prime}+2 x y^{\prime}-6 y=0 ; \quad y_{1}=x^{2}$
\#5b. The indicated function is a solution of the given differential equation (no need to verify). Use reduction of order to find a second solution.
$\left(1-2 x-x^{2}\right) y^{\prime \prime}+2(1+x) y^{\prime}-2 y=0 ; \quad y_{1}=x+1$

4.3

\#1b. Find the general solution of the differential equation.

$$
y^{\prime \prime}-36 y^{\prime}=0
$$

$\# 3 b$. Find the general solution of the differential equation.
$y^{\prime \prime}+4 y^{\prime}-y=0$
\#4b. Find the general solution of the differential equation.
$3 y^{\prime \prime}+y=0$
\#5b. Find the general solution of the differential equation.
$2 y^{\prime \prime}+2 y^{\prime}+y=0$
\#7b. Find the general solution of the differential equation.
$y^{\prime \prime \prime}+3 y^{\prime \prime}-4 y^{\prime}-12 y=0$
\#6b. Find the general solution of the differential equation.
$3 y^{\prime \prime}+2 y^{\prime}+y=0$
\#8b. Find the general solution of the differential equation.
$y^{\prime \prime \prime}-6 y^{\prime \prime}+12 y^{\prime}-8 y=0$
\#9b. Solve the initial-value problem.
$4 \frac{d^{2} y}{d t^{2}}-4 \frac{d y}{d t}-3 y=0, \quad y(0)=1, y^{\prime}(0)=5$
\#10b. Solve the initial-value problem.
$y^{\prime \prime}-4 y^{\prime}+5 y=0, \quad y(0)=2, \quad y^{\prime}(0)=1$
\#11b. Solve the initial-value problem.

$$
y^{\prime \prime \prime}+2 y^{\prime \prime}-5 y^{\prime}-6 y=0, \quad y(0)=y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=1
$$

\#1b. Solve the differential equation using the method of undermined coefficients.
$y^{\prime \prime}+9 y=15$
\#2b. Solve the differential equation using the method of undermined coefficients.
$y^{\prime \prime}+y^{\prime}-6 y=2 x$
\#3b. Solve the differential equation using the method of undermined coefficients.
$4 y^{\prime \prime}-4 y^{\prime}-3 y=\cos 2 x$
\#4b. Solve the differential equation using the method of undermined coefficients.

$$
y^{\prime \prime}-8 y^{\prime}+20 y=100 x^{2}-26 x e^{x}
$$

\#5b. Solve the differential equation using the method of undermined coefficients.
$y^{\prime \prime}+4 y=3 \sin 2 x$
\#6b. Solve the differential equation using the method of undermined coefficients.
$y^{\prime \prime}+4 y=2 x \cos x$
\#7b. Solve the initial-value problem.
$y^{\prime \prime}+4 y^{\prime}+5 y=35 e^{-4 x}, \quad y(0)=-3, \quad y^{\prime}(0)=1$

4.6 (we skip 4.5)

\#1b. Solve the differential equation using the method of variation of parameters.
$y^{\prime \prime}+y=\tan x$
\#2b. Solve the differential equation using the method of variation of parameters.
$y^{\prime \prime}+y=\sec \theta \tan \theta$
\#3b. Solve the differential equation using the method of variation of parameters.

$$
y^{\prime \prime}+y=\sec ^{2} x
$$

\#4b. Solve the differential equation using the method of variation of parameters.
$y^{\prime \prime}-9 y=\frac{9 x}{e^{3 x}}$
$\# 5$ b. Solve the differential equation using the method of variation of parameters.

$$
y^{\prime \prime}-2 y^{\prime}+y=\frac{e^{x}}{1+x^{2}}
$$

\#6b. Solve the differential equation using the method of variation of parameters.

$$
y^{\prime \prime}+2 y^{\prime}+y=e^{-t} \ln (t)
$$

\#7b. Solve the initial value problem using variation of parameters.
$2 y^{\prime \prime}+y^{\prime}-y=x+1$
\#1b. Solve the differential equation. $x y^{\prime \prime}-3 y^{\prime}=0$
\#3b. Solve the differential equation.

$$
x^{2} y^{\prime \prime}+3 x y^{\prime}-4 y=0
$$

\#2b. Solve the differential equation.
$4 x^{2} y^{\prime \prime}+4 x y^{\prime}-y=0$
\#4b. Solve the differential equation by variation of parameters.
$2 x^{2} y^{\prime \prime}+5 x y^{\prime}+y=x^{2}-x$
\#5b. Use the substitution $x=e^{t}$ to transform the given Cauchy-Euler equation to a differential equation with constant coefficients, then solve.

$$
x^{2} y^{\prime \prime}-9 x y^{\prime}+25 y=0
$$

\#6b. Use the substitution $x=e^{t}$ to transform the given Cauchy-Euler equation to a differential equation with constant coefficients, then solve.
$x^{2} y^{\prime \prime}-4 x y^{\prime}+6 y=\ln \left(x^{2}\right)$

