DiffEq - Ch 1-2 - Extra Practice

1.1

State the order of the given ordinary differential equation. Determine whether the equation is linear or nonlinear.
\#1b. $x \frac{d^{3} y}{d x^{3}}-\left(\frac{d y}{d x}\right)^{4}+y=0$
\#2b. $\frac{d^{2} u}{d r^{2}}+\frac{d u}{d r}+u=\cos (r+u)$
$\# 3 b . \frac{d^{2} R}{d t^{2}}=-\frac{k}{R^{2}}$
\#4b. $\ddot{x}-\left(1-\frac{\dot{x}^{2}}{3}\right) \dot{x}+x=0$
(ii) is linear is u ?
\#5b. Determine whether
$u d v+\left(v+u v-u e^{u}\right) d u=0$
(i) is linear in v ?
\#6b. Verify that $y=e^{3 x} \cos (2 x)$ is an explicit solution of $y^{\prime \prime}-6 y^{\prime}+13 y=0$ (don't worry about interval of definition).
\#7b. Verify that $y=\frac{1}{4-x^{2}}$ is an explicit solution of $y^{\prime}=2 x y^{2}$
Then give at least one interval I of definition for this solutions.
\#8b. Verify that $-2 x^{2} y+y^{2}=1$ is an implicit solution of $2 x y d x+\left(x^{2}-y\right) d y=0$
Then find at least one explicit solution $y=\phi(x)$, and graph this solution. Finally, give an interval I of definition for your solution.
\#9b. Find values of m so that the function $y=x^{m}$ is a solution of $x^{2} y^{\prime \prime}-7 x y^{\prime}+15 y=0$
\#10b. Verify that the pair of functions...
$x=\cos 2 t+\sin 2 t+\frac{1}{5} e^{t}$
$y=-\cos 2 t-\sin 2 t-\frac{1}{5} e^{t}$
is a solution of the system of differential equations...

$$
\left\{\begin{array}{l}
\frac{d^{2} x}{d t^{2}}=4 y+e^{t} \\
\frac{d^{2} y}{d t^{2}}=4 x-e^{t}
\end{array}\right.
$$

1.2

\#1b. $y=\frac{1}{1+C_{1} e^{-x}}$ is a one-parameter family of solutions of the first-order DE $y^{\prime}=y-y^{2}$. Find a solution of the first-order Initial Value Problem given initial condition $y(-1)=2$.
\#3b. $x=C_{1} \cos t+C_{2} \sin t$ is a two-parameter family of solutions of the second-order DE $x^{\prime \prime}+x=0$. Find a solution of the second-order Initial Value Problem given initial conditions $x\left(\frac{\pi}{6}\right)=\frac{1}{2}, x^{\prime}\left(\frac{\pi}{6}\right)=0$.
\#2b. $y=\frac{1}{x^{2}+c}$ is a one-parameter family of solutions of the first-order DE $y^{\prime}+2 x y^{2}=0$. Find a solution of the first-order Initial Value Problem given initial condition $y(0)=1$. Also, give the largest interval I over which the solution is defined.
\#4b. $y=C_{1} e^{x}+C_{2} e^{-x}$ is a two-parameter family of solutions of the second-order DE $y^{\prime \prime}-y=0$. Find a solution of the second-order Initial Value Problem given initial conditions

$$
y(-1)=5, \quad y^{\prime}(-1)=-5 .
$$

\#5b. Determine a region of the $x y$-plane for which the given differential equation would have a unique solution whose graph passes through a point $\left(x_{0}, y_{0}\right)$ in the region. $\quad x \frac{d y}{d x}=y$
\#6b. Determine whether the differential equation $y^{\prime}=\sqrt{y^{2}-9}$ possesses a unique solutions through the point $(2,-3)$.

2.1

\#1b. A direction field is given for the differential equation $\frac{d y}{d x}=1-x y$:

Without using a calculator, sketch an approximate solution curve on the direction field that passes through each of the indicated points.
(a) $y(0)=0$
(b) $y(-1)=0$
(c) $y(2)=2$
(d) $y(0)=-4$
$\# 2 \mathrm{~b}$. For the differential equation $\frac{d y}{d x}=x^{2}+y^{2}$,
sketch a few isoclines $(f(x, y)=c)$ for
$c=\frac{1}{4}, c=1, c=\frac{9}{4}, c=4$. Then, construct a direction field by drawing lineal elements with the appropriate slope to match each isocline. Finally, use this rough direction field to sketch an approximate solution curve with the initial condition $y(0)=1$.
\#3b. For the autonomous, first-order differential equation $\frac{d y}{d x}=y^{2}\left(4-y^{2}\right)$, find the critical points and phase portrait. Then, classify each critical point as asymptotically stable, unstable, or semistable. Finally, sketch typical solution curves in the regions in the $x y$-plan determined by the graphs of the equilibrium solutions.

Extra \#4b. A population model is given by $\frac{d P}{d t}=k P-h$, where h and k are positive constants. For what initial values $P(0)=P_{0}$ does this model predict that the population will go extinct?

2.2

\#1b. Solve by separation of variables:
$\frac{d y}{d x}=(x+1)^{2}$
\#4b. Solve by separation of variables:
$e^{x} y \frac{d y}{d x}=e^{-y}+e^{-2 x-y}$
\#2b. Solve by separation of variables:
$d y-(y-1)^{2} d x=0$
\#5b. Solve by separation of variables:

$$
\frac{d y}{d x}=\left(\frac{2 y+3}{4 x+5}\right)^{2}
$$

\#3b. Solve by separation of variables:
$\frac{d y}{d x}+2 x y^{2}=0$
\#6b. Solve by separation of variables:
$\sin 3 x d x+2 y \cos ^{3}(3 x) d y=0$
\#7c. Find an explicit solution of the given initialvalue problem:

$$
\sqrt{1-y^{2}} d x-\sqrt{1-x^{2}} d y=0, \quad y(0)=\frac{\sqrt{3}}{2}
$$

\#7b. Find an explicit solution of the given initialvalue problem: $x^{2} \frac{d y}{d x}=y-x y, \quad y(-1)=-1$

2.3

\#1b. Find the general solutions of the differential equation $\frac{d y}{d x}+y=e^{3 x}$. Then, give the largest interval I over which the general solution is defined. Finally, determine whether there are any transient terms in the general solution.
\#2b. Find the general solutions of the differential equation $x^{2} y^{\prime}+x(x+2) y=e^{x}$. Then, give the largest interval I over which the general solution is defined. Finally, determine whether there are any transient terms in the general solution.
\#3b. Find the general solutions of the differential equation $\frac{d P}{d t}+2 t P=P+4 t-2$. Then, give the largest interval I over which the general solution is defined. Finally, determine whether there are any transient terms in the general solution.
\#4b. Solve the initial-value problem:
$y \frac{d x}{d y}-x=2 y^{2}, \quad y(1)=5$.
\#5b. Solve the initial-value problem:
$\frac{d T}{d t}=k\left(T-T_{m}\right), \quad T(0)=T_{0}$. $\left[k, T_{m}\right.$, and T_{0} are constants]
\#1b. Determine whether the given differential equation is exact. If it is exact, then solve it.
$(5 x+4 y) d x+\left(4 x-8 y^{3}\right) d y=0$
\#3b. Determine whether the given differential equation is exact. If it is exact, then solve it.
$\left(y \ln y-e^{-x y}\right) d x+\left(\frac{1}{y}+x \ln y\right) d y=0$
\#4b. Determine whether the given differential equation is exact. If it is exact, then solve it.

$$
\frac{d y}{d x}=\frac{-x^{3}-y^{3}}{3 x y^{2}}
$$

\#2b. Determine whether the given differential equation is exact. If it is exact, then solve it.
$(\sin y-y \sin x) d x+(\cos x+x \cos y-y) d y=0$
\#5b. Solve the initial-value problem:
$(4 y+2 t-5) d t+(6 y+4 t-1) d y=0, \quad y(-1)=2$
\#6b. Solve the given differential equation by first finding an integrating factor, then using it to convert the differential equation to exact form:
$(6 x y) d x+\left(4 y+9 x^{2}\right) d y=0$
\#1b. Solve the Bernoulli form differential equation
by using an appropriate substitution: $\frac{d y}{d x}-y=e^{x} y^{2}$
\#2b. Solve the Bernoulli form differential equation by using an appropriate substitution:

$$
x \frac{d y}{d x}-(1+x) y=x y^{2}
$$

\#3b. Solve the differential equation by using an appropriate substitution: $\frac{d y}{d x}=2+\sqrt{y-2 x+3}$
\#4b. Solve the differential equation by using an appropriate substitution: $\frac{d y}{d x}=\frac{1-x-y}{x+y}$
\#1b. Use Euler's method to obtain a four-decimal approximation of $y(1.5)$ if $y(1)=1.4$ and $y^{\prime}=(x-y)^{2}$. Use x -increments of 0.1 .
\#2. Use Euler's method to obtain a four-decimal approximation of $y(1.5)$ if $y(1)=1$ and $y^{\prime}=x y^{2}-\frac{y}{x}$. Use x -increments of 0.05 .

