Homogeneous systems...

Finding eigenvalues: $|\vec{A}-\lambda \vec{I}|=0$
Finding eigenvector for an eigenvalue: $(\vec{A}-\lambda \vec{I}) \vec{K}=\overrightarrow{0}$
Distinct real eigenvalues: $\vec{X}_{C}=C_{1}\left[\begin{array}{l}k_{11} \\ k_{21}\end{array}\right] e^{\lambda_{1} t}+C_{2}\left[\begin{array}{l}k_{12} \\ k_{22}\end{array}\right] e^{\lambda_{2} t}$
Repeated real eigenvalues: find $2^{\text {nd }}$ eigenvalue using $(\vec{A}-\lambda \vec{I}) \vec{P}=\vec{K}$

$$
\vec{X}_{C}=C_{1}\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right] e^{\lambda t}+C_{2}\left(\left[\begin{array}{l}
k_{1} \\
k_{2}
\end{array}\right] t e^{\lambda t}+\left[\begin{array}{l}
p_{1} \\
p_{2}
\end{array}\right] e^{\lambda t}\right)
$$

Complex conjugate eigenvalues:
use positive version $\lambda=\alpha+\beta i$ to find eigenvector $\vec{K}=\left[\begin{array}{l}a+b i \\ c+d i\end{array}\right]$

$$
\begin{aligned}
& \overrightarrow{B_{1}}=\operatorname{Re} \vec{K}=\left[\begin{array}{l}
a \\
c
\end{array}\right] \quad \overrightarrow{B_{2}}=\operatorname{Im} \vec{K}=\left[\begin{array}{l}
b \\
d
\end{array}\right] \\
& \overrightarrow{X_{C}}=C_{1}\left(\overrightarrow{B_{1}} \cos \beta t-\vec{B}_{2} \sin \beta t\right) e^{\alpha t}+C_{2}\left(\vec{B}_{2} \cos \beta t+\vec{B}_{1} \sin \beta t\right) e^{\alpha t}
\end{aligned}
$$

Non-Homogeneous systems...

$$
\overrightarrow{X^{\prime}}=\vec{A} \vec{X}+\vec{F}
$$

Method of Variation of Parameters: $\vec{\Phi}=$ fundamental matrix (from \vec{X}_{C}) $\quad \vec{X}_{P}=\vec{\Phi} \int \vec{\Phi}^{-1} \vec{F} d t$
$\vec{\Phi}^{-1}=\frac{1}{\operatorname{det} \vec{\Phi}} \vec{\Phi}^{T}$
$\vec{\Phi}^{T}=$ transpose $=$ for $2 x 2$ reverse elements on diagonal, negate everything else
Solving with initial condition: $\quad \vec{X}=\vec{\Phi}(t) \vec{\Phi}^{-1}\left(t_{0}\right) \vec{X}_{0}+\vec{\Phi} \int_{t_{0}}^{t} \vec{\Phi}^{-1}(s) \vec{F}(s) d s$

$$
\overrightarrow{X_{P}}=\left[\begin{array}{l}
\text { function from table to match forms of terms of } F \\
\text { function from table to match forms of terms of } F
\end{array}\right]
$$

(must be the same form for all rows - so selected terms must cover all terms in all rows of F)

$g(x)$	Form of y_{p}
1. 1 (any constant)	A
2. $5 x+7$	$A x+B$
3. $3 x^{2}-2$	$A x^{2}+B x+C$
4. $x^{3}-x+1$	$A x^{3}+B x^{2}+C x+E$
5. $\sin 4 x$	$A \cos 4 x+B \sin 4 x$
6. $\cos 4 x$	$A \cos 4 x+B \sin 4 x$
7. $e^{5 x}$	$A e^{5 x}$
8. $(9 x-2) e^{5 x}$	$(A x+B) e^{5 x}$
9. $x^{2} e^{5 x}$	$\left(A x^{2}+B x+C\right) e^{5 x}$
10. $e^{3 x} \sin 4 x$	$A e^{3 x} \cos 4 x+B e^{3 x} \sin 4 x$
11. $5 x^{2} \sin 4 x$	$\left(A x^{2}+B x+C\right) \cos 4 x+\left(E x^{2}+F x+G\right) \sin 4 x$
12. $x e^{3 x} \cos 4 x$	$(A x+B) e^{3 x} \cos 4 x+(C x+E) e^{3 x} \sin 4 x$

Then take derivative, plug into system of DEs, and solve for constants.
(Note: you need to multiply by extra t s if terms match any terms in X_{C})

