N

Calc3 - Lesson Notes - Chapter 16: Vector Calculus

16.1: Vector Fields

Function forms we've seen so far... '

2D functions

One numericai value in the
domain maps o cne
numerical value in the range
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y = f{x}
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What is a Vector Field?
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A vector field assigns a vector to each point in the domﬂ'm:_

' vector field
Xy Py 2 "I function

—V.F(x, ».z)|

7%

32

Chid
3D multivariable functions

Two numerical values {xy} inthe
domain map to one numerical
oulput value ih the range

iz

5

ErE - B I 2 T - T
LA IR I I A N

w1 % 44 4 0

s v w8 w o u B
% % tERE A T LI
(E.

W%
% o1 12 18 i

P f{xpE)

{pressure)

Magnetic fleld strength and direction




Sketching a vector fleld

To sketch, make a table of a fow input values and skeich the resuiﬁng vectors ai their locations:
Ex) Sketch ﬂx, y) ={~y, x)

¥
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if this fieid represented current flow in water
<0, 0= ' v and you placeci a particle in if, it would rotate
<0, 1> about the origin.
<t 1>
<., 0=
<1, 1=
<@, -1»
<1, 1=
<1, O
<%, >

Vector Fields are very useful oot

Much of the universe can be modsled using vectors whi ch vary at locations...vector fields are
axtremely useful in many field.

GEODYNAMO

Earth's magnetic fieid

pss/ivesewyoutube.conwatch?v=ElIWpLIIUE

Amerlca's Cup boat design

bttps:iiwww.youtube.com/watch?v=BVaeWXApdidE




16.2: Line Integrals

integral 'sum’ things...

f\ . N
Integrals can be used to sum the guantities produced by a function over a portion of the domain...
Single intearal Bouble integral , Triple integral
ye= f {x} Z = f (x:’ y) ’ alr pressure Pos f{x,y,2)
565432 @
X
a b ¥ 4
5
frea fj7Co)as
p . B
Line integrals along a curve
What if | don't we don't want 1o sum up the integrand values over a region, but instead want to sum up the values élong & 1D path
that curves through the 30 domain?
We can do this, and a%thotigh it really should be called a 'path integral', it is called a line infegral of ¥ along curve €.
Triple integral Line integral along curve C
ik

wir pressure P = f(x,9,2) air pressure P = f (x,3,2)
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In order to integrate along it, we will need to parametrize the path...



Review - how to parametrize various curve shapes...

in order to move along this curved path, C, but surm in a single dimension (a distance along the path} we need
to first parametrize the gurve in the domain, Recalt the foliowing about paramelrizing curves.

1) Circle in 2D: o) y .;)
x(¢)y=acost @ x(t)=—acost ~or~ x(r)=asint a (1)
y{t)= asint ' y(t)masizxt ¥(1) = acost "
where <1 <2 where 0152

2) Ellipse in 2D: y(t)

‘ |1} ' COSE & cos” t+sin® g =1
x(t) = acost /" \? a
. R f b4
y{t)=bsint #() fi+£’_ = ]
where()ﬂiﬂ?.:t \--—/ Sinfm"g” ag b2 ’
2
3) line segment in2D or 3D: t=1
‘ = P+ (x1,¥1,21
t=0
.ﬁom (xo, yo)to(xn yl) Po(ta,}’o,z)o) .
(7, 07)
| —

) =(1-1)r, +17

x(t)=(1-1)x, +tx
y(z‘)=(l—-t)y€, +1 y

where 05151

4) circular paths in 3D (we'll niead this when we add a dimension):

helix

floating circle
z
y
X
x(¢) = acost x(t) = acost
y(t)=bsint »(¢) = bsint

z(t)=k

where O0stsdn

z(t)=1

where 0st<2r




| So, how do we integrate along a parametrized path?

Back in chapter 13, we explored arc length and concluded that 18t for a path C where we've
parametrized and have a position vector {vector function) 7@ ...

..t1he tangent vector % at a point is found by

-
f (“ ) takmg the derivative of the position vector,
\ if we divide by the length to create the unit - -
tangent vector, we preserve the direction ()= m (1
y but lose information about the length. 0

But if we integrate the maghitude of the tangent vectors, 1= .Hr_, ( t); dr
that gives the arclength moving along the curve, '

Line integral along curve ©

air pressure P = f(x,3,z)

Line Integrals along C for $calar Functions |

ot

> |

Wae start with a small distance in
the parameter domain, dt...

X

..if you midltiply by the magnituds of

the tangent vector, thisscalestoa  then you muitiply this infinitely small distance, ds, by
small distance on the parametrized  4he vaiue of the integrand function (which is
curve... - parametrized) and uge an infegral to sum:

Er’] dt

dt

gf(x,y,z)&mif(x(,),i(,),

*
a scalar function
{that has been parametrized)



A scalar function line Eritegrai example...
Ex) Evaluate Ixy“dg where C s the right helf of circle x* + y° =16
o

The integrand xy“ is not a vector, therefore this is the scalar funclion case. so we use!

¥
First, parametrize the curve: % : , A . b
, J fxpy.z)ds= j I (x(‘t}, y(r},z(t)) r'(t)l dt
 x{t)=4cost n 7 #(7) c a
wherg —— St 5~ .
»(t)=4sint 22

Next, build the position vector and take it's derivative:
- . - e
7= (dcost, 4sing)  r'=(~4sint, 4cos?)
Then, find the magnitude of the position function derivative:
M mj(—-dsi’nt)! +(4mst)2’ 2 /168in° 1 +16605° F =4

Firally, build the line integral and evaluate:

[ytds = f (4cost)(dsine)’ 4de =222
c e ' 3 : \

Line Integral along C for Vector Functions

Tha guantity we want 1o integrate along the path may already be a scalar function, but sometimes we want to work with vector
fields. For example, let's say that we have & vector field which represents the electric field at any point in space, and we want
fo know how much work i takes 1o push a charged parlicle through this Beld along & specific path.

electric field The work done is the amount of the force which is-in the direction of motion times the
"> distance traveled, and from earlier in the course we learned that this is found by
F(x.2) taking the dot product of the force vector with the direction vector.

Here that is the dot product of the Force vecior and the Tangent vector:
F

- I

. , ooy, =5,
- Y S
path of the parficle

The dot produgt produces a scafar quantity, so we can uss our integral structure 1o sum the individusl
contributions 1o the work along the entire path:

b
I??(x, y,z) ds = j?‘(x, y,z)e ;)’(:) dt
o4 @

“I'his idea of sumiming the amount of a vector field in the direction of the path applies is many situation besides the idea of
work in physics, 5o this is the definition of a line integral along C for Vector Functions.




A vector function line integral example...

Ex) Evaluate J'F dr where F‘(x, y,z) {x+y, Y2z, Z
¢ and Cis given by 7{f) = (12 £, t") 0<t<l

-> : by .
The integrand is clearly a vector, therefore this is the vector function case, so we use: I F(x, LA Z) ds = .f .F{x, ¥, z) . r'(t) dt
: ¢ ' a

Here, the curve has already been parametrized, and we have
the posmcn vector, 50 we take it's derivative:

)= (21,3%, 2)

But before we cah take the dot praduct, we need to eveluate the vector function at 1) by plugging the

components of rinto the x, y and Z of F-

F(r) (t J+(£):(¢)- (t’) (t’) ) (A, 01"

We then take the dot product: F(r)er'(t) (tz w0 -1, !£> (2( 3, Zt>
=26 + 26 4360 =3 + 2 = 56— 420

Finally, build the line integral and evaluate:

¥ 5o 17
j;(s AL 2 )dl“‘-:i-s-

Line Integrals for Scalar versus Vector Functions

So there are fwo cases for line (curve) Integrals, one for scalar functions, and one for vector functions:

: wow 4w )
7o B N R
2 13 131

: 1
2o f WoR :
12 13 13 9. 18 o dgly”

?‘(:)‘ dt

:!;f(.K,y,z) ds = zf(x(‘)sJ’(f),z(t)) |

i

already a scalar, —
so multiply by the magnitude of r{)

. b, >
jm}?‘(x, y,z)ds = I F (x.y.z)e w;"'(1) dt
¢ ‘ “ 4

V'

‘g
’I

a vector, —
so need dot product with r(f)
to get a scalar




2

Examples
example A} Evaluate jxyz ds where Cis the line segment from (-1,5,0) to (1,6,4)

L) = | a.—-»é::)d;wama“’p «-&»Mié,é» Yo = 4_:4,43 ,mwm op ol ey af@f@ N
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example B) Evaluate jzdx + xaﬁhi- ydz where Cix=¢, y=0, z=1 0<r<1
* c
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Intuitive understandlng of Work/summation around a vector fleld

To get a better feel for vector line integrals, let's cor%.éide? the 2D case of a force field and
estimate what the vector line integral wili be along different paths.

We need to estimate how much of the field is pointing in the direction of travel, and then add up
" ittle segments along the path {in blue) {green indicates the vector is in direction of travel, red
against direction of travel, black dots are where field is perpendicular o travel).

¢
TR j
b J—
Ny . i
For this path, the field is aligned For this path, the field is For this path, the field s

with the direction of travel for most perpendicular to the path for much of  almost always in the opposite
of the curve, so the line integral the curve (dot product = 0} and for direction of fravel, so this line
would be positive. the rest of the curve, there is about intagral would be negative.
X an even balance of aligned and not- '
aligned field, so the line integral
would be approximately zero.

Line Integrals with respect to x,y,z

Sometimes the curve C is difficult to parametrize, or the problem is defined using functions for x
and y separately. .

Scalar function case:

The curve could be a fine segment in just the X direction or y direction, called line integrals along ¢
with respect to x and y:

(e @) 0a (76D S (11 0) O

When these occur together, they are written as: j P(x, y), dx + Q(x, y) dy
. ) c : '

Vector function case:
If the vector function could be written as F = (P,Q,R) then: J‘ Foedre= j Pdc+Qdy+Rdz
(& <

To see why this might be easier, we'll consider an exampie. ..




Example...scalar function line integral wrt x,y
#7) Evaluate jxy dx+(x—y) dy where C consists of line segmnts from (0,0) to (2,0) and (2,0) to (3,2).

We're going to have to evaluate each curve separately, but we don't have to
come up with some new parametrization of the curves with respecttot. We » Ca

can instead just use x as the parameter;
Gy

IJWPC&»P(JCS}’) dy = Ixy de+(x-y) a5r+£2xyc£x+(xmy)dy
c . G '

on Cq: on Cy:
x = x (the parameter) x = x (the parameter)
y=0 0£x<2and  y=2x—4 2<x<3 and
dx = dx o = dbe
dy=0 dy =2dx

Substituting:

‘j: sy de+(x-y) dr = [ (2)(0) tﬁv***”((x)m(ﬂ})(ﬂ)*i (x)(2x—4) ds+{(x) (22— 4)) 2

0dbx+ (2x x4 2% 4x+8)dx

'N‘-—.w

=0+?(2x2 ~6x+8)dx
z

3
2[42—%3 3 +8x] 1
3 L 3

Compare doing this with a parametrization using t: i ;C
2

P X
Ixyasw(x.uy)ajmj'xydx+(x-y)a3;+f.xydx+(xwy)cbi Ci
c G : €

on Ci: , on Cy:
r=(1-t)+tr, r=(l-0)r+1y

r=(1-1){0,0)+2(2,0) r=(1-£)(2,0)+1(3,2)
r=(24,0) 0st<1 and p=(1+2,2r) 0<r<1 and
x=2t de=2dt x=1+2 de=df

y=0 dy=0 =2t = 2dt
Substituting: y= 4

.f xyd”(xmy)ﬂb’ I (20)(0) 2t +{(21) - (ﬂ))(")"*“f (e+2)(20) it +((2+2)— (2)) 2

$0 you can reparametrize with 1,

I 212 W TaR T o 4t) dr or jugi use X or y, whichevear you
feel is easier.

p-«

gh—m.w

[+
1 d
2:2 +2¢+4 B—t“ +1 +4t} x%i

0

o!—-—v‘



16.3: The Fundamental Theorem for Line Integrals
Some fields are special...
Consider the foliowing vector line integral: Evaluate f ¥ cix+xdy but let's evaluate it over two

different paths between the same two endpoints, which we'll call clrves Crand Co...
Cy: line segment 02) Ca: parabolic path x = 4 y*
from (-6-3Y 10 (0.2) G ’ from (-8.-3) 10 (0.2)

G, !
("55"‘3>

These two paths would have different parametrizations...
use standard fine segment;

justuseyas ,thé parameter:

F=(1-1){=5,-3)+1{0,2) r=(4-11)
=(5¢-5,5t-3) x=4~1
X=51-5 y=t
y=5t-3 ~3<t<2

0st<1

Now that we have r, evaluate the vector line integral along each curve...

C,: line segment 0.2 C3: parabolic path x = 4 — ;v2
from (-5.:3) 0 (0.2) Y & from (-5.-3) to (0.2)

el » ¥4
={5¢t~5,5¢t3 T 27

; (5¢~5, 5¢~3) Z. ; { )

7o) e gty

F=(y,x) ‘ F=(y,x)

F )= (-3, (51-5)) F()={(0". (+-#))

- - ‘ - -

For=((st-3)', (51-5))+ (5,5) For=((c),(a-))+ (-21)
=5(5t-3) +5(5¢—5) =-2(1*)+1(4-1*)
=125¢* 125t +20 =2 - 4

i . 2 .

[(125¢* ~125¢+20) a (-2t~ +a)a

] v -3 i

125 , 125 , T general, a vector line integral 1 1 ?

= [?t; -t +201] along different paths yields a = [“534 ”5’3 "‘“41]

different result - it is dependent -

4.3 upon the path taken through the 245

g fisld. 6

Now let's evaluate along the same paths, but for this vector fiald: j(s’ +2xp) -+ ( -3y*)dy
C,: line segment Cy pe;rabolic path= 4 — y?‘
from (-5-3) 0 (0.2) e A from (-6.-3} to (0.2)

Cz
{-5,-3)




N

We have the same parametrizations as before...

use standard line segment;

T=(1-£)(~5,-3)+1(0,2)

=(5¢-5,5t-3)
X =5t~§

=5t-3
0<t<1

C;: line segment
from (-5.-3) t0 (0.2) o (0.2}
(5t-5,5t-3) ;

=(5,5) Lt'/cz
F= (3+2xy, 5" =3y") (5,3}

F(r)=(3+2(50-5)(51-3), (5¢~5Y ~3(51-3)")
= (50 ~80¢ +33, ~ SO +40¢ ~2)

B P = (50 ~B0(+33, 507 +401—2)+ (5,5)
= 5(50¢ ~80¢+33)+ 5(~50¢ +40¢~2)
= -200¢+155

\_; ;;

1

[(-200¢+155) at
! This vector field is special...we
get the same result integrating

. 4
=[-100¢ "‘“155’10 along different paths.

Vactor fields like this are called
conservative vector ficids,

Conservative Vector Fields

just use y as the parameter:

=<4—tz,t>

x=4-1
=t
~3L1&82

..but the field is different, so we recompute the vecior fine integrals:

C.: parabolic path x = 4 — y*
from (-5.-3) to (0.2)

F(r)=(3+2(4-2)(0).(4-7) -3(')
={-26 +8043,1' ~11 +16)

-

For'=(-20 +8+3,2* -1 +16) « {-21,1)

=-2t(~2¢ +8+3)+1(¢* ~114* +16)

=5~ 27 - 61 +16

(5: 2T m6t~§~16) dt

iy S— 12

r[l 97 -3¢ +16’tl3

Conservative Vector Fields have the property that vector line integrals computed between
two points will have the same value regardless of path taken (as long as the endpoints are

the same)...they are independent of path.
. This field is conservative:

Fe <3+2xy, x -~3y2>

This field is not conservative:

F=()

How can we tell if a vector field is conservative? The following is true for conservative vector
fields and can be used to test if a vector field is conservative:

oo _20
dy

ForF = (P,Q), the vector field is conservative if

How do we determine If a field is conservative in higher d!mens:ons? (We need to taik .

about that after covering a later section).



Checking the fields in the example:

—p .
F=(3+29,7 ~3y%) F=(yx)
P=3+2xy Q=x"-3y Py Q=x
P o % _ox Qf:zy %2,
oy ox Y ar

op _9Q P o0

oy ox dy  ox

censervative not cqnservative )

The Fundamental Theorem of Line Integrals

If a vector field is a conservative, not only will you get the same vector line integral regardless
of path taken, but there is an alternative way to compute the vector line integral which is
sometimes easier. .

Remember, the Fundamental Theorem of Calculus (part 2)?

[£(5)de=F®)-r(a)

We use this whenever we evaluate definite integrals, and it states that we can sum the effects of
the function over the entire integral by plugging the endpoints into the antiderivative of the
function. (We only need to evaluate at the endpoints.)

Something similar applies for vector line integrals, but only in the case of a vector
line integral for a conservative vector field.

II?:: d@r = £ (endpoint)— f (startpéim‘)
C

This function, 7, is calied the potential function of the field, and is conceptually
simitar to the 'antiderivative' of the field.

Potential Function for a Conservative Vector Field
A theorem states that if a field is conservative:

There exists a scalar function f (x, y)
such that: Vf = <ﬂ, A >

_.and this scalar function is the potential function which is used in the fundamental theorem of
line integrals to compute the vector line integral.




Computing the Potential Function of a Conservative Vector Field

" —
For our conservative field example: F = <3 +2xy, x* — 3y2>
We know a function, f (x, »), exists such that Vf =(f,, £,) = F

Starting with this definition, we know! £, =342xy
S, = X -3y
We start to find 7 by taking the antiderivative of £, with respect to x:
F(xy)=[ 1. de=[(3+20) dv

=3x+x"y+C

This integration constant, C, is a constant with respect to X, but could be a function of y, so we
replace it with some currently unknown function of y:

f{xy)=3x+x"y+g(y)
To establish g(y), now we take the derivative of both sides with respectto y:
d d
d ) = 32+ 2Py + g (¥
SUGn=4[ )]
L, = X+g'(y)
But we know what f, must equal from the field:  x* —3y? =x* +g'( )
so:  g'(y)=-3)
Now we can take the antiderivative of this with respectto y:
[e'(v)ady={-3y" ay

g(y)=-»'+K
Substituting this into the earlier expression for f{x,y} gives us the potential function:

f(x,y)y=3x+x’y—y’ +k

Evaluting a vector line integral using the Fundamental Theorem of Line Integrals

Evaluate [(3+2x)ds+(x* ~3y*)dy  along the two paths: c (0:2)
(44
First check to see if the field is conservative: 2,
_ Cag so the field is ¢ ' x =4y
P=3+2y Q=x-3y gp PO conservative, and we (-5-3)

P oy 90 oy Py  ox need only evaluate at
o o the endpoints.

Because fhe field is conservative we can find the potential function (shown previously):
F(xy)=3x+x’y~y' +k
Now we can use the fundamental theorem of line integrals to evaluate the vector fine integral:

Fdr= f (endpoint)~ f (startpoint)
< ( ) .

j3+2xy)ae+(x =3y )b = £(0,2)- 1 (-5-3)

4
0.2)
=[3x+x"y-y* ]:msﬂ)

=(3(0)+(0) (-2 )-(3(-5)+(-5Y (-3)-(-3)
w8 +15+ 7527
@ (along all paths between these two points)



Vector Line Integral for conservative field around a closed path is zero

If the starting and ending points for a vector line integral {a.b)

are the same, we say the path is a 'closed path'’. /—

In that case, if the field is conservative, we can evaluate L/ r\)

using the Fundamental Theorem of Line Integrals:

I F « dr = f (endpoint)— f (startpoint)
¢

...but since the points are the same, the result will always be zero around a
closed path. ’

Tree for evaluating line integrals
Is integrand a scalar or vector function?

scalar function /' (x,y) vector function ;"(x, ¥)={P,Q)
‘ - f AR g Is the field conservative?
[F(y)ds=[f @) a
dy ox
yes
b - — - -
j Fodr x] F(r)sr'di [F ear= fend)- f (start)
¢
- where Vf = F




Examples

#3) Determine wrlgther or not T"ls a conservative vector field, 1f it is, find a potential function f
.- such that Vf

i '7 I*(x,y) {(2x-3y,~3x+4y~8)
o
e »f 3 R efs)

@(& - 21<f3ﬁ R Tasat i . E%JM S s ;
%e)= f(lx',%a)dx “3xt9ly)==3x+1y8

o)z W3 4aly)  gly)= yR |
’Fﬂ - .‘3}(—(—7'[3) j;-./,f;) “—j(‘fy*ﬂ)dj
3ly) = y*By+C

\

#4) Determine wrzgher or not F is a conservative vector field, Jfitis, find a potential function £~
such that Vf

F (x, y)= <e *cos y, € sin y)

Rl D - _
%’}M 5‘5«; e My %%/ e > shg

# se @ [WO /#ﬁjﬁa‘“&/&fﬂ‘mx

#12) Evaluate the integral jF o dr F(x, y) <2,y2>

where C is the arc of parabola y = =2x" from(~12)t0(2,8)
. aonjp,/\fq—fwﬁ’ Qﬁ’ =D % =0 = _jsﬁ

ﬁ)\ X “C‘j‘«‘-‘*‘j ( 2.1 .
Ly =) B 7lp=y* »2 ’P e ) - “’?‘X

gz 3P0 gty fpas
“aj =9 gly) = ";‘-;‘y‘?»é'c

(F A7 =] 3 ’*5’53
28

(age S - [ S5 =[]
50" [




16.4: Green's Theorem
The concept of circulation
Consider these 2D vector fieids:

1 o s _
tdat. 242 e
hl S A -+
- S A T
F={(y,-x) F=(2,2) o Fe(a)

if we computed vector line integrals around a counter-clockwise, closed, circular path...

F=(p-=) F=(-3.%)

- —

< F 7' will be positive when the path direction and the field direction are aligned, negative when in
opposite directions, and zero when perpendicular.

When these are summed over the entire path with an integral, the result will be:

- -y - -y G i
j F o 7' = negative Fer' =0 F o 7" = positive
C C C

Now what if we imagine these fields represented current flow of a body of water and we placed a ball in
the water at ythe origin...

14

..the ball wouid:

rotate clockwise not rotate rotate counterclockwise
"negative circulation” "2aro circulation” Ypositive circulation”




"Microscopic’ circulation

if you had many really tiny beach balls, they would all rotate counter-clockwise in a positive circulation
field, even If they were not at the origin.

y More force on 1op

B Imbalance effectively causes
counter-glockwise rotation,

PR —

13?@2?[

Bl

e
Less force on botiom

This Is because there is an imbalance in the amount of force on the ball on opposite sides.

Horizontally, there are higher forces above and lower forces below, so the effective motion Is left
on top, and ‘less left’ (effectively right) on the bottom.

The same Is true for the vertical forces and the imbalance also causes counter-clockwise
rotation.

‘Macroscopic’ vs 'Microscopic® circulation

If you considered every point
in a region within a vector field,
every point would have a
‘microscoplc’ rotation:

Then if you are taking a vector Jine integral for a closed path in this
field, you can think of this.as summing the contributions of all the
'microscopic’ circulations that are within the region enclosed by the

path...
y ¥
O ot & GG
PEREIY P SERTRETW 4 s
IRIARE AR Gog % -
&G Q%Q}

..the total coyld be considered the ‘macroscopic’ circulation and its value

would be pasitive if the majority of microscopic circulations were positive,

negative If the majority of microscopic circulations were negative, and zero
if the microscopic circulations balanced out to zero.

A great website with even more detail and visualization tools:
bttps://mathinsight.org/greens_theorem_idea

An expression for circulation

For us fo mathematically sum the indivigual microscopic circulations, we need a mathematical
expression for circulation. Let's return to the idea that imbatance in force on opposite sides of a point
causes rotation. if our field is defined to be: F = (P,0)

These purple horizontal arrows for top and bottom would be changes in

the field are really changes in the x-component of the field as we move
in the y-direction...

” X Combining these gives an
AP ...and wouid cause a positive circulation expression for the circulation at
' if this change was negative (the field this point:
was pointing in the negative x-direction): *
More force on top ap F Q P
R oy

1ess force on bottom

(Seem familiar? Our co_nservative
The vertical component of the field would work similarly, imbalance field test: conservative flelds
causing rotation, but now this wouid be changes in the y-component of have circvlation = 0)

the field as we move in the x-direction..,

) ...and would cause a positive circulation
More force on fight if this change was positive (the field was
pointing in the positive y-direction):
AQ 3
1055 foros on loft —wg

Ax Ox
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Green's Theorem

Now we can define the structure and theorem for this section. Green’s Theorem is a mathematical
statement that the vector line integral in 2D is the sum of the individual microscopic circulations:

(60 &P
(§rars0a=(f[2-5)u

Green's Theorem only applies when the field and path are 2D and when the path is counter-clockwise
(known as ‘positive orientation’). This is why the line integral is written with a modified notation:

- GPdx+Qdy or $P dv+Q dy
c ' c '
(If the circulation is in the clockwise direction, you must multiply the result by -1 to account for this

negative circulation.)

Tree for evaluating line integrals

Is integrand a scalar or vector function?

/\

-
scalar function f(x,y) vector function ¥ (x,y)={P,Q)

is the field conservative?

b
£f(x,y)ds=_£f(‘?)|r[dt @ a0 ® a0
, oy x &

e yes
Is C a closed path? f,?. dr=f (end )m ¥i (smrt)
v ,
where Vf = F
yes
no Green's Theorem
b
- v , aQ oPy
{1 Fadr=F y,.r’d}' Pdx+ - [WMWJM
J 17 0) rarod=[l| 575




Examples |

#1) Evaluate the line integral (a) directly and (b) using Green's Theorem.
§)(x ~y)de+(x+y)dy C:circle with center (0,0), radius = 2
[ 4

(a) directly
conservative? P=x-—-y Q=x+y
oP o0 , Y . .
=] % —Z=1 50notconservative,can't use potential function

oy Ox

4

2
parametrize C: x=2cosf y=2sint 0<¢<2z% /‘
r=(2cost,2sint) ¢’ =(-2sint, 2cost) \

NV

F(r)= ((Zcost)m(ZSint), (2cosz)+(2sin t))

* F o1’ ={2cost~2sint, 2c08f+2sint} « (-2sinz, 2cost)
=-2sin#(2cost—2sint)+2cost(2cost +2sint)

= —4sinfcost+4sin® t-+4cos’ 1 +4sintcost

e 4 :
i 2
@(xwy)cbc»l«(x%«y)cbzm IF-r'mI 44 8x
c N O [ ¢]
¥
(b) using Green's Theorem 2%

/D\i*c @dea-gdyzjj[?gmﬁﬁ)d/i
P=x-y Q=x+y ’x 7 -4
AN 07

P,

-1

ox Oy .

2 2

@(xmy)@+(x+y)@mg2d4mHzrdrda

- 225 d@:{r ar=2[0; [%rﬁ]: =2(27)(2) 3]



Examples : A 0

#3) Evaluate the line integral (&) directly and (b) using Green's Theorem, | oe?
™ $(x) de+(x*)dy  Cis the triangle with vertices (0,0), (1,0), and (1.2) e
J [
L ~
() diest SR

R 5 3 i -
OK’ASQNG"\VQ\ ‘g‘g =X 9)@ Zix‘y L= |

C2(1-t)<o,0> fte)n>  onte {
s ¢
Colt> T eLi,02 éodt—-;@
BLlR)= Ct) o> Fz,??’ <95,>.&lo2= 0
L 7= (l——b)(lo>+-é</z> oSt %\

? <I 242> 'ad -»40‘2} ) 3 _ Z‘— Lg,"‘/@
3 . L2EWP 7L oD (1684t = [T Do =
(F)= 426 E£3> F" s >

(%) e x af pasrite—
@ ?‘Zt/ > Flzcl2> Eldnmldol

é
¥ [r"’) <% > B ~<g,;;2rg{~‘¥">,<f 1,29 ((Czeh/é{-% )fz Liatse ]
- 2{;%;*4% _ (%

o 3 = 04N 4(-12) ;E;B
A U’> VSihs  Geeans

gy = 32 S = bt

z j | fzxfwjg "%)dydg

@B (Tap-rity = Lirg'=s
= (8x-0f)

(E@ g(e?s( 23)dx /[6x -5 BL B



Examples Cﬁo

#4) Evaluate the line infegral (a) directly and (b) using Green's Theorem,

™ 4)( x) ds +(y) C consists of the ine aagm@ntss from (0,1) to (0,0) and from (0,0) to (1, 03 and
' the parabola y =1-x from (1,0)fo (0,1)

F———4>‘3>

(D divedt
COA!&N«%*L? %‘% =0 %% =0 &;@:7
Since ThiS & &dosnx’faf’? éc _,{‘_J
bt (‘Pw& At chatl Best andd ﬂﬂc@@{ez(-- X
@ = (l"'ﬁ”‘)éa >+t Lo, o> weots | f‘l:_-;,.{p -

j 15{’“”!7%6 zyif“%;éf";.,rg}; = @

F/%jzvt,’:i> el e >
@ ¢ -Q»t*?ctw:s bpeyer = o estel A= <le” (L. = 3
Ff’&‘:)« <t o B Flmset, 2. L1p7= € ftae s
3) o - Lt 14?) [c 0)-—*»(01) ='= <, -2t
@ eyt = ¢ e 3

- e !”3‘&:}“ t -

2(E)= 28, tD PP = z_’;%; |4 L .

B ol 343 y=fz] v Sz ot = [ 1]
,/ i 20T oy e

~
i éb) v Mf%m ,,,,,,
§ f(dx{fjjdg: jjé %9‘{2 ”ﬁg\)dA ﬁ[o o) dA- /f:)
“ D




Examples

#8) Evaluate the line integral using Green's “‘t“hec;rem along the given positively orlented curve.
é(m 2):) dx “&(x +2xzy2) dy CJ is the boundary of the reglaz’t between the circles

¥ +y =1 and x*+y* =4
Loa e’ %QW“’X?A—‘?X:;L %w@ ncr?‘ conSen TV e

Gl G2y = (§ (8B

J 5 Y34ty |

Ve /o(/afa X o oSS Ge- i ar)
= SN

z:lf ““"“jmm.ww

s
= 5 S ‘1’[ rwﬁy)S*Y[rcoser\)( Py m) rd ’dﬂ-\

i

s

AT AT

- J ZTFJ (4 r%s}y Y ¢ osw sh’%}rﬂérde
{

1%

™ z
= Sz@famsasﬁﬁr\de 5, rAr |

\

S agosar(ws e&SMa)der j il

(7]

5 sy Ao tfalf
0

= 57’“73 [ s"’(}
- s~ 1) r(z) L))
(> -9 ( 3%)

pot Conte b, hud Nina ihiggral -
@llwy A }M%



Examples
#12) Evaluate the line integral using Green’s Theorem.

F : /
F (x,y) = (yz cosx, X+ 2ysin x> Cis the triangle from (0,0) o (2,6) to (2,0) to (0,0)

el 28 2. o Zugeas (st Com I main
consenmoe y )%L = x4 cha()g % i P , y (zgﬂ
‘ Y=y

% év Gof x_)AM«[ )(Z;&ng‘;\ ;;) af»y |
] H(% w%}iﬁ | | . ,T\'(z,a)
f§ 2 x4 Zycask ~Zgps
2 3¥
= S §7’Z?< dej AX |
o 0 .
© oty - e =2 OAE

| < wite foh
o E- /6 Dot Ahis oS 4 cleck ief
@ Sfé)@d}c j@fl, l ZM‘?—#W«e an}»i‘fﬁﬁa‘?}

3o aniver § @

\
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1 6.(5:: Curl and Divergence
Definition and computation of Curl and Divergence

Recall the use of the symbol 'del' to define the gradient vector for a scalar, multivariable function f

o o o
<f;,f;,,f> <3x &y’ 3>

..and the del symbol can be thought of as a vector of partial derivative operators:
vol2 0 2
ox dy Oz

Now that we are working with vector functions, what happens if we take the dot product or cross.

d divergence and curl

product of del with the vector function? We get what is calle
Divergence Curl
(divergence dot product) (curl - cross product_}
divaV-? cmrlF#Vwa
‘ i j ok
<%§ A éf—> (P,Q,R) la 8 o
oy o "=y &
_op 6Q oR P O R
"y o oR 90 9P OR 8Q P
<“é§m5§ o o ax 6y>

{output is a scalar at each poinf,

a scalar fleld) - {output is a vector at each point,

a vectoy field)
Ex) Find the divergence and curl of the vector field  F = <xey"’ ,ye”, ze’"y>

Wy E =t E = L% 52 Lxe’ ;ye L2’ >
_ Rre™) +hilye ™)t &1 %ﬁmf?

] TS %Y
= @3Q&+€?% 4@ !

A ~ .
" = L J E _— ,
o) B2NXF 4 erdiver
m‘ﬁ ya*z %@j s M&i‘?”’ ,.‘ffi,,,

4), (orb‘@%]"“ﬁxi%@ f)))(axz,f;, »y-2

[m’

2

g 7) (ﬂe —%%Cfﬁ)\)

;gx%e‘” xye" ) (5 gz 7




Meaning of Divergence giv 2P, 00 R
x & &

The divergence of a vector field at a point is a measure of the net flow out of the field:

H net flow out Is negative because field
P appears o by disappearing hers
This point has positive divergence - the field s acting as & 'sink
net flow out is positive because field
appears 1o be generated fere
- the field is acting as a 'source’
Note: every point in a field has a divergence vaiue, and
just flows in' or "lows out’. For example, if you had a field like this
but with smaller magni

its value is a little more subtle, in reality, than
where the field is flowing to the right,

tude on the Jeft and larger magnitude on the right...

..than this point would also have a positive divergence, because in its region 'less’ Is flowing in than is
flowing out due to the imbalance in magnitudes. This region is behaving as If it is "sourcing' field because

more appears to be leaving than entering.

Meaning of Curl = <§_lg _8Q P8R 90 _ Qg>

dy &z oz & x Wy
The gutl of a vector field at a point is & measure of the tendency for a vector field to rotate:

4
The curl vector length indicates the magnitude of
the tendsncy io rotate, as well as the direction,
/ \ The curl vector is perpendicular to the plane of
e rotation at this point, and indicates direction of
1 / rotation according to the right-hand-rule.
' \:\ / curl F' '

curl is like a 3D version of circulation

If the rotation at a point is in the x-y plane, then the curl vector wo
would equal our expression for circulation, so you can think of curl

uld only have a z-component, and
{ as the 3D equivalent of

circutation: z 1 F=VxF
curt B =Y X .

i j o kylioj ok
curl F :2- 2 -?m‘:"@“ L
x &y oz| |&x By &
y P Q R (P @ O

/*:\\_ N §2_6P

———




Examples
#2) Evaluate the divergence and curl of F(x,y,2)= (xz vz, %z, xyz2>

I B =~ F= {%(' %'%?t T e

A

= Zye 4 2xgrA Ty (ERIT ]

P g% in
vl F=VxXF = . :
c; p"? & M

&

1 o
Xz'y%* »y & T

(B, (RL=1- & fgd), (RS>

I E?Tx; xyzj/ (.ij'jé”z')l (4*2 "Xz@}_}

If a vector field is conservative, curl =0

it can be shown that if a field is conservative (and therefore there exists a potential function),
then the curl will be zero.

Technically, however, the converse is not necessatily true, just because a field has a zero curd
does not guarantee that the field is conservative. But checking curl = 0 can be used to show
conclusively that a field is not conservative. '

In practice, when curl = O thisis a strong indication that the fieid is conservative, so we should
attempt to find a potential function. |fweare able to, then this does indicate that the field is
conservative.

When a field has curl = 0, it does not have a tendency to rotate, so we say the field is
irrotational. . o

v

What does divergence = 0 means?

If you imagine that a field represents something like a physicel medium (such as a fluid or a
gas), then div F represents the net rate of change with respect to time of the mass of fluid {or
gas) flowing from a point, per unit volume.

If the divergence is zero, that means there is no net flow out of the field at that point...any 'fluid’ that

is flowing in is all flowing out, which means there is no ‘compression’ of the field {accumulation of
fluid in that spot).

Therefore, when a field has divergence =0, it does not compress, and is called
incompressible.




N

Examples

Ex) Determine whether or not the vector function is conservative.
It it is conservative, find po‘tentzai function fsuch that }? vf

F(x,y,2)={x,y,2)
" 7«9) we wonld Lw**e ¢hact el T%%

I\'W‘Q 1 ;D/,{f‘ "’é@iﬁ?ﬁ. ﬁﬁ Con ) i@ﬂqﬂ*\f&, f\)f’ ,F’,O }Wi"”w& Mi e W
Abat aj a N T He 1§ a necelfas buart-ahst FutGeeest a:’mﬁ 332 »
& ﬁg’é‘”ﬂfiiﬂi ﬁ‘iméiﬁ‘i’?ﬂ; + («"5’»’ Yfg‘f)

“? 4

:ﬁ/ﬂ,ﬁé'md e %Vﬁ‘f’”"ﬁg "(i? ’éﬁ&(
jmﬁt& «*’1’%&4 V‘F F

F’<X,j',qr7
5o Px=x £y=y Lo
el Jon : \
Hny A= 22 2 qlym) (
b= gl — 3597 |

gly2) = j y49 !

9ly = J«fal—h 2
5o Llyg)= = Zs %y uh)
- and ‘&;? Wi —2 ?’#{?‘ j =2
h(z)J 2l
W)= %2 *+C
Se /C(%)'wl«) B jz""z««?“ L
k)=
W@‘f & ﬁdf»&ﬂ/ﬁmi "[wweﬂ""&%w?"‘ S@‘ﬁ“ﬁ %f V“gj gw
'}9 'ﬁﬁ w»:;iwrz@‘i ’ '
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Vector form of Green's Theorem

From the previous section, for 2D, Green's Theorem says the line integral of a vector over a

™~ closed, counter-clockwise, path can be evaluated by integrating the expression for circulator
over the enclosed area:

| 80 P
i)ﬁ vdr=<£>1’dx+g@mg[~éxgwé;}d,4

- (<?£MQQW,9€M9@,QQ»~Q’1>~(0,0,1)]dA
W\ 22 oo o/

.we get the vector form of Green's Theorem:

If we wrote this using curl...

$F +dr =[[(curl F + k) d4
¢ Do

Videos about the concepts of divergence and curl

The YouTube channel 38luet Brown is run by Grant Sanderson, and excelient math/science video
producer who did most of the Calc 11l videos for the Khan Academy website. His separate channel has

some really excellent videos, with very good animations and explanations, including this one about
divergence and ot

https://www;youtube.com/watch?v==rBS3DpBJQsE
Y @

Div of curl?

Taking the curl of a vector field (at a point) produces a vector, sa the result for all points is also a vector
field. You could then take the divergence of this curl of the vector field.

But the result can be shown to be (theorem 11 in the textbook):

¥F= {P,Q,R)is avector field on R? and P,Q, and R
have continuous second —order partial derivatives, then
- divewrl F =0

| : | 2~
~ Auersere oﬁ'?fﬂd“"*k{a (,VF) = V. L%c% ’J >

> 2 gly 9 E
Lﬁp\ﬂl ECM OQ@N% 4 g’géilf %’L— { 9%




16.6: Parametric Surfaces and their Areas
Parametric Surfaces are similar to Space Curves

™ ‘We've encountered the idea that you can use a parameter, ¢, to ‘move along' a space curve...
- Space Curve
z We only need one dimension in the ‘parameter domain’ to move

along this space cutve fo produce all points on the space curve...

f L&

e parameter e
e " M Rarinlis space curve
iy Px(t), y(-f),yz'(f)}

T = <2, Y0, 20> ————r ¢ i )

P(x(2). 2(£) (1))

..and you can think of the position vector, 7, as something that
converts { values in the parameter domain to points on the space
curve (ke a funclion).

Parametric equations:
x=x(t)
y= y(()
z=2z(1)

It we need to represent a generic 2D surface in 3D space, fo cover all points on this surface, we will
need a 2D parameter domain, so instead of parameter, {, we naw define parameters u and v...

Parametric Surface We need two dimensions in the *parameter domain’ to move
- across this surface to produce all points on the surface...

Zh

yiv), 2(uv) parameter parametric
domain surface

S ¢ Wl v), 2(0,9))
.(u,v) ?”(M,'V} ‘ W), 2tV

U

...and you can think of the position vector, 7, a8 sumething thal
converts points (1L} fn the parameter-domain to points on the
parameftric suface (ke & ?ugmim). .
Parametric equations:
x=x{u,v)
y = yl(#,v)
: z=z(u)
Grid Curves

if we hold one of the parameters constant and vary the other one, this will trace out a curve along the
parametric surface, which is calfled a 'grid curve’,

z grid curves holding v constant and varying u

gric curves holding u constarit and varying v




Examples
#1) Determine whether point P lies on the given plane.

7(3;,12) = <2u +3v, 1+ 5u~v, 2+u+v> P(7,10,4)

oldd Iﬁ}{' 2 vows' Su-—y=4

A =D
buz

u = l(/g
DacEsubebshucte?

Ubv -2

ZutdveF
- |4Su-v = =
Z busd =M

20 43V =P
sy~v =9

u-}f\I:L

So 0 IS ask wz*‘e,p(am

Parametrizing Parametric Surfaces

Parametrization of a parametric surface means finding two parameters which span the domain and
then a set of functions of these pararmieters to produce the coordinate values for each dimension in the

output space where the surface resides.

Because there are different possible choices for the parameters, parametrizations of parametric

surfaces are not unique,

Let's consider some common surfaces and thelr parame’crizationsf o




Parametrizing Cylinders
xz +y2 :az
™ F4

X

For the plane with circular grid curves, we can use polar parameters, d, f. 'The last dimension is not &
parameter, but is used when specifying the point in 3D space...

.—)
Possible parametrizations: # (z, 6)

x = acosd x=acosd X=X

y=asing y=y y=acosf

these couid be

Ze=2 roversed - just . .
depends upon z=asind z=asing

which axis you

want {o define as

the reference for ¢

Parametrizing Spheres

z

L4y +2=d

For spheres, we can just use polar coordinates, and use the @,¢ angles as the parameters,

with the radius being a constant on the spherical surface; )
x = asingcos 8

—

r(¢.9) y = asin ¢sin@
Z=acos¢
Parametrizing Cones
Z x4y For the cone, there are two ways we could go...

z
_.we could use the fact that the grid curves are circles and use polar

coordinates as the pararmeters:

- x=reosd
"("’9) y=rsind
z=7

_.or we could take advantage of the fact that the surface is
expressed with z as a function of x and y and just use X,y as
the parameters:

X=X

~{(x,
@) oy
0 z=X + ¥

This illustrates that there are often multiple possibie parametrizations. You just need any two
parameter variables and a set of equations such that if you vary the two patameters over all
possible combinations of their values, the parametric equations map out points that cover the

entire patametric surface.




Parametrizing Cones

z =t b )P

™ _ 4 z
>
i
X X
Possible parametrizations:
F(r,9) 7{x,p) #(r,0) F(xy) 7(r.6) Fxy)
x=rcosd X=* ' x=peosd X=X [ 3
x=r x = +
y=rsing Y=V " N rrE
; W y YENXTE y=rcosf y=y
z Foed r o=t g — ‘. e
z=rsind z=z smpsing  z=z
Parametrizing General Surfaces
For 98% of surfaces, it is possible o express the surface as Z = f (x, y)
and in these cases, the simplest way to parametrize is to just use x,y as the two parameters and make z a
function of these:
X=X
(%) y=y
z=f(x%y)
Parametrizing a Plane
TN Once we have the equation of & plane in the form ax -+ by bez=d
we can choose x,y as the parameters and solve for z in terms of these to parametrize:
‘ X=X
r(x,5) y=y
d—ax—b
P e 4
c
Examples
#19) Find a parametric representation for the surface of the plane that passes through {1, 2, -3}
and contains the vectors (1,1,~1) and {1,~1,1)
(methoed different from textbook solution) |
e e © 7 F
forte\ = plave A= Lol
i hal 4 | |
2 & (=0, (1= Dy 1=
= &L 0,2,
—> 87>
r,= < (NS
flore™ 05 —2y2E= 2027l 32
2y -2z O =H+é \ X=X
2 fat ptertton T gy=Y9.
“ly-E= el
Zz =91
m e /'-Z ptd E kY Y i
o J ) More. canphrtly witlen, ¥ (xy) =< %37 2
o2z - e XxE
md‘-ﬁ‘e-'u‘ ¢ é“m
(a/aw‘d?/;‘/‘ﬁ &I
Should! cubi=



Examples

#21) Find a parametric representation for the surface of the part of the hyperboloid x+ y -z" =1
that lies to the right of the xz-plane. ,\) .
~ ’{; V) b W\fy)’!j )(» )(
,, P e ) -
A5 0 use X

Ei:&:w ﬁ’ i

5

7 ={z*% )

% Plx,2)= <KX, [ x%+1 &7

ﬁ\
Restricting the parameter domain
The parameters may be restricted to only a portion of the parameter domain and the result is that
only a portion of the parametric surface is produced.
Consider the sphere: x* +3* +2° =d’
that has been parametrized as 7(45, ) ={asingcosd, asingsin@, acos 6)
if we allow the parameters to vary as...
4 z
this produces the entire parametric suiface.
y
X
z ...this produces only a portion of the surface.
m\“ ¢
hY
\
y

NOTE: parametrization isn't complete unless the limitations on the parameters are also specified

\)wﬁ[’”x&w 4se + p@f

ﬁémz.

eﬂ?ﬁ

.




#24) Find a parametric representation for the surface of the part of the sphere x* +y* +2* =16
that lies between the planes z=-2and z=2

hen 222 XFYTHT
Z & \Ia,ry.hjl wake X9 %{)«,mme#ef/
—or— could use S/h_en‘c,«,} de}@/)

: X= s Npease
K y-;;/fféhdffy‘%
E oSy
sol 7 ( %, e);: {Hsigese, 15hgsiny, Heasg>

\ Tt we nsed (MHZ .~

r/l-’aféﬁ&; whan 222 ’5[ ' s lwg}wwfoz o !j'%'llfm‘(ﬁ
— 2‘7"‘7 — [ " e = iiz :-.,;z;{g .::—L;

' =1 ’ \ ViR AT “ =
r =z )7 4 Al

2o lmiks Lor /ﬁamww{é!'i' are,
-~ 2 : ,
Ferex, zem]

(4

#4) Identify the surface with the given vector equation w;"(u, v) = (ZSinu, 3cosu, v) | 0<v<2
/ wm ﬁ”%f v

1oty & (U= L2sim, Bessn (o [yrit-giren~br /)
1% a ﬁm%m@%ﬁ%ﬁm gor an @s«m()«f e )

1)
A Rl

-

& ?[%5‘0:426/)@(, 3a5u,/ extrudes —/’fzfj 4 n Alechon,
Mo a4 »etigm‘mi cylhdor




Tangent Planes

If you hold parameter v constant and traverse across u It m the parameter domain, this traces curve
Cy on the surface. The tangent to this curve would be 7 a vector whose components are fotind by taking

the partlai derivatives in the x,y, and z directions, but as we move in the u direction, so we call this
vector r and define |t as follows: < ox oy 6z>
u

ou’ du’ Ou

Similarly, if we hold parameter v constant and vary v in the parameter domain, this traces curve C; on the
surface which has tangent vector 7, defined as:

= (& ¥ &
Y\ov v v

(Although these don't have the ‘prime’ notation, we understand these are derivatives due fo their subscripts)

Tangent Planes

These two tangent vectors are both tangent to the surface at point P 50 we can use these vectors
to define a tangent plane...

__and we can find the normal vector for this plane by taking the cross product of these two tangent
vectors:

Normal vector which defines tangent plane to
a parametric surface is:

AT x T
where:
Re(Z2 ) 7u(Z2
““\ou' &u’ ou Y\ &y’ v




Examples
#34) Find an equation of the tangent plane to the given parametric surface as the specified point.

x=w2. yv=v'., z=uv: u=1 v=1
ﬁ(‘l,wl) <M7' uv>
= L2, 0v) 77 = <o zv, u>
al-—his fafﬁ'é‘” U=/, u;-g’f e

+ - o+

‘W&F:?Xf?“&/ 2 o | )::; (@“2!'(awm)/ Y-

0o 2. |

- —T - o7 2("”’ - ?‘>
/< Z 2-\17 m_g{ﬁ#/wﬂ‘dm

pozmoajarpq&,qd/lwm wlﬂeyl U=V

T e
%;%‘V ;éé)(f);‘&’ 24 —V?;‘C-" —/IZ>
Lpmeptplace’  A¥+ by+C® = f:jz_” 12) &b 10D
(~ )x H-)g+ )% ;[-ﬂf;&); (DD +(20)
= +T
=

T AT

ééngm%ﬁamf 1 —% —Y f =0 j




Area of a Surface

Further, if we go a small amount in the parameter domain, Au we travel Au;: in the direction of this
tangent vector, and similarly travel A'v_rv along the other tangent vecior.

2

el -
Ave,  Aur

The area is this inﬁnitesimally smali rectangle can
be found by taking the magnitude of the cross-
product (from earlier).

area=|(Aur,) x (avr;)

= [;'; X a Aulv

In the limit as the size of this rectangle approaches zero, the rectangle is a good approximatien for a
small portion of the area of the surface, so to find the total surface area, we use a 20 integral to sum

these areas.

Area of Surface: A(S) mfﬂg x;;;z dA
D

(D is the region in the parameter domain)

" Area of a Surface: special case where z = f(x,y)

In the special case where the surface represents a function where z = f (x, y) '
the parametrization of the surface would be: _;:(x, y) X=x y=y z= f( x, y)

<6x 2y &Hi& 4 M>m<1 0 zc>
N\ ox/

.and the tangent vectors would be: 7. =

oo ox/ \ex dxl  ox
¢W<@ & f?z..)(é,., » MHO . @:>
Y \ey oy oy ay ey oy oy

...and the cross-product would be:

.50 the area wouid be:

...which can be writtern...

oY ’
A(S )= #’J 1 +[’5;) +[5;) d4 ..he formula used in Calc1/Calc2
b for surface area.




Examples
#38) Find the area of the part of the surfaée of the plane 2x +5y+2z =10
™ - that Ites inside the cylinder x4+ y =9

r()@) =X ﬁ,'*“'xwa‘w}

e

T ciaz>  (y=2<oIr52
~t

gl = (?; '(‘”\ = L7, 5P
o

 AE = [t :»f«“—é
"*""&’yf 5f ZodA = 55 (35 rdede
iy j ’ cde
=3 [2x)] ‘%(zj:

= Glem (%) =w@ |

#42) Find the area of the part of the surface z = 1+3x+2)”
that lies above the trian_gie with vertices (0,0), (0,1), (2,1)

™ %”"v;ﬂ Ry D)=L R, 132D

| N\ = <L(,0,32 @,:: <o, ty>>
Safe] TT F

E W%"’} 2 ):.a—«af‘?j/w

l ©
o {

}F‘; A / Q—('/é.y?’*-‘/‘ = w-@z‘
o ey
4"(3):' f f \/zwl&yzd/i ::-5 j;ﬁw@z f?(yﬂ(%’
P .

oy&x'

e T —

= Al jg e d

= fo+ /677—

@ | L leaf/lé:f) 7'27 dj "Qu 929 Ay

: l & S Z'W%v‘)a{x = Lot /)ﬁ ’(EW% zj_

(il oae- I OaS Iaer:) R

N | | , Sdumydy

»

;:?/éj

2 %
(k- 3L RO

|




16.7. Surface Integrals

. Surface Integrals of Scalar Functions

In 16.2 we defined line integrals for scalar functions initiaily for @ 2D scalar function...

Line integrai for scalar functions

2 "”""f(xvy

C

[£(5) =] (:(0. 2 O) Pl

...which you can think of this way...

parameter domain function domain
— VAR Ll o
dt /
s >t jldt
a b < curve C

integral sums up the value of the

funciion gver this domain

Aithough itis alitlle harder to picture, we said in 16.2 this can be extendead to higher dimensions...

function: domain

Z

parameter domain

i f(xy.2)ds ?_if(x(f),Y(f),%'(t'))[r'(t)] dt

ke o

integral sums up the value of the
function over this domain

[re@r @)@

A line integral over a curve is summing the scalar numerical values of a multivariable scalar
function over some 1.0 curved path through the domain of the function.

The integrand is the function value at-a point mul tsphed by the magnitude of the derivative of the
position vector which is the non«normallzed tangent vector in the direction of £ moving along the

curve,




,’/ﬁ\

In this chapter, we naw extend this concept to a 20 parameter domain, which means we define a 20 surface in
the function domain, and therefore we are now summing the scalar function value over a 2D surface:

- - : integral sums up the value of the
function domain function over this dormain

parameter domain
\4

The area of the ‘patch’ of surface covered by a small area dA in the parameter domain would be approximated
by dS = ['rf‘ x?:l dA, a small portion of the fangent plane at that point.

Summing the values of the function over this surface gives the surface integral of the scalar function:

.gf(x,y,z) ds = gf(?(u,v)) 7, x7,| dd

Surface Integrals of Vector Functions

We can define something similar for vector functions.

function domain infegral sums up the value of the

, funclion over this domain
Z .

parameter domain Y t curve C

_— -v“f.w
) dt - .. ;/ 7 ;
- > ! g — &
: ° [F(r)er a
X
o )

‘fﬁ(x,y,z)drm—-iﬁ(r)-? dt .
C a

Earlier, we said for a vector function, a line integral over a curve is now summing the amount of
the vactor field pointing in the direction of the curve at each point over some 1-D curved path

through the domain of the function.

The integrand is the dot product of the field vector with the direction vector (to get the component
of the field poinfing along the path).



D

For the 2D surface version, we use a 2D domain region, but now we are summing cornponents of the vector
fleld instead of numerical vaiues of a scalar field. But what is the higher dimension equivalent of faking the
component of the field in the direction of the curve?

zh

1 " We still fake the dot product to get the component of the fieldin a
direction, but now the direction is the normal vector for the surface,
3

This presents a small complication...there are really two normal
vectors for a surface, one on each side. We define n as the vector
perpendicutar to the tangent plene and point ‘outward' if you viewed
the surface as a sphere: or upward for a plane: 2

‘positive n positive n :
| — 7
X

in fact, for a curved surface we defing positive and negative orientations as follows:
positive orlentation for this surface negative orientation for this surface

integral sums up the value of the
function over this domain

parameter domain
¥y

»

Summing the values of the components of field that are normal to the surface (in the positive orientation
direction) the over this surface gives the surface integral of the vector function:

| gFrdS mgF-ndS wherenwi%%%w

surface Integral of the vector function s also known as the 'flux of F across §'

Using the fact that ¢S = ;}; X ;”; 1 dA

j;j.F-dS zg F(r(u,v))»mv d?xg F(r(a,v))om igxryid}i

iy —t- o~
HF o dS = IIF . (I; X 1;,) dA is a form that is easier to use in computation
§ s




iz
i

Physical Interpretation of Flux

You can think of flux (surface integral of a vector function) as
meaning how much of the field goes 'through’ the surface.

Depending upon the orientation of the surface, you could have
maximum flux or minimum (maybe even no flux).

Imagine a fan blowing air and the flow of air being represented by
a field:

The field lines are parallel {o
the surface (zero component in
the normail direction of the
surface) - no field moving

The field is aligned with
the normals to the

surface ~ lots of field
moving through the

siirface. through the surface.
Surface with maximum flux Surface with minimum flux
Summary (so far) |
Surface integral of the scalar function: Surface integral of the vectbr function:
integral sums up the value of the integral sums up the value of the

functicn over this doemain function cver this domain

[ s = [[ 1 Fla)) e <

§
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Example -

#7) Evaluate the surface integral Iyz as

17 n2)as= [ GFlum)) 57 ad

where Sis the part of the ptane x+y+z=1 thatlies in the first octant.

Parametrize the surface using x,y:
?(x,y, z) = (x,_y,lwxwy>
Y Derivatives on the tangent plane:
T=0-)  E=(01-)

X
The surface normal vector; Magnitude:
i j k
rxr=1 0 -=(LL1) |rx7 §-\/12+12+12 =+f3

01 -1
The surface integral: . y
(A (r(=3)) | x0|da= [ | y24/3 dy e 1N y=1-x

D o0 '
11»»;:
f (y-w-y")dyax

1-x
1, 1 _, 1 |
wy’wxy"wy””‘] dx
0

m'imz 27 73

|

> |
= '._i. +3~x2m~£x+1)¢bc
L6 27 276

- -
= 4! ~-1-x‘+};x3w}éx2 +}-x
. 24 6 4 6

2%




Example
#19) Evaluate the surface integral for the given vector field and the oriented surface

F (a}r, y,z)={xy,yz.zx) Sis the part of the paraboloid z=4~x~)* that lies above

the square 0 < x <1, 0< y <1 and has upward orientation.
s [[Feds =[[Fe(rxr)dd
s by

3

Parametrize the surface using x,y.

?(x,y,z) = (x‘,y,dimx’” -—y2>

Y ¥ Derivatives on the tangent plane:

. r=(1,0,-2x) 7 =(0,L-2y)

The surface normal vector:

i j ok
Fxr =1 0 -2x=(2x2y1)
0 1 -2y
The surface integral:
%
[[Foas [[F-(uxn)dt 1 I

= [[(ym )« (2x,29,1) A L.

; 0 1
=[J(2@y+27z+2x) 4

; |

11 ‘
m:.'(Zx"y»&»Zyz (4wx2 w«yz):~ft~(4w~«xﬁ w-yz)x)a):c&

80 .

11
:"_»'(szy«wyz —2x*y* 23 +4x—x° wxyz) dy dx

g0 .

L 8 , 2,5 2.5 1 LT,
- 2 s EE o e 5 mx3 — 3 £1x

,m}x’y +3Y =3XY —5Y +4y-xy 3@?]0 |

1/
= xwgngzm-%wxwx’wlx)&c

73737 s 3

- _ 1] ‘
= 3»Jvc’a~t~’§~::t:-—»»“?v»;v"c""’—~*:%~.:'ac'4!~23::2--}'«»x“-—3"«:;;:2] {713

37737 9 5 4" 76

1180




Simpler forms if you can parametrize as <X, y, g{x.y)>

These first two examples we actually somewhat special: it was possible to parametrize the
surface by expressing one variable in terms of the other two, for example z = g(x,y). When
this is frue, you can use a simpler version of the surface integral formulas (shown here for
the case where x and y are the parameters, but could also work for yz, or xz as parameters).

!

Feds ={[Fends wh WM
[[£(3,2)ds = [[ £ (Flav))F x7)] dd ff7-as ﬂ S e
s D n O =
ﬂf*‘ a5 = [[ (5
| simplifies to l
if r(x2)=(x.8(x.)) if r(xy)={xy.g(x.»))
then “and F =(P,Q,R)

gf (x.y.z)ds m!ﬁff (w,g(x’y))\/(%)g w&»(%})z»ﬁd&r then j}'}dfs’m g(w%‘iw %«Mt)dd
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Example (rework using the simpler formula)

#7) Evaluate the surface integral fyz as
S

where S is the part of the plane x+ y+2z=1 thatlies in the first octant.
z
We would have the same parametrization...
r(x,p,2)={x,y,1-x~y)

...but because we just used x,y for the parameters, we can use this
formula for the surface integral:

. (£ =[] 1) [ ) (2] 1
&z oz

——

y=1-x  Z=h 3=
N [ (ey.2)ds =[] y(1=x—p) =1 +(~1) +1 a4

1l-x

(a litle simpler because the derivatives  =./3 j J' ( Y2y — yz) dy dx
aren’t vectors and no cross product) ? @

1, 1., 1,1
=3 wy"w*wz-wy"] dr
-! 27 27 737 |

= B[ L -xf Lo (1Y ml(amxf)dsc
L2 2 3 ,

L
= 3[—-}-—:@‘4 +lp 1o +-in] = ﬁ
2 6 - 24




- Example
#19) Evaluate the surface integral for the given vector field and the oriented surface

F(x,y,z)={xp,yz,2zx) Sis the part of the paraboloid z =4~ x? - y? fhat lies above
the square 0<x<1, 0<y<1 and has upward orientation.

"
-

P=

1
We would have the same parametrization... | I

”;‘*(x,y,z‘) = (x,_y,-4wx2' ' 2) | ' 0 >

...but because we just used x,y for the parameters, we can use this
formula for the surface integrai'

HF . dS = jj[ me m+R)dA

XYy Q”yzn R=2zx g(x&y)mq’mxzwyz
og

y

b’ > LY A Y

oy

[ eas- H[...p...&.... % R}d&

-
—

i

jf ~(@)(-22)-(y2)(-2y)+ =x) dd

[)29-(a-2 o) +(a-2 - )s) o

L3
- a‘----;t-

L -5

(2:::"3}-!—83»*z —2x*y* + 29" + 4x—2° -r—xyz)dydx

0

= %

1y 1

IEe% +§-y’ mgxzyg%—z?f +4~W“x3y“§x}"3] dx

@

o

x2+§m%x2+~%+4x-xa wix dx
3 3 5 3 |

| 1, 1,7 |ns3
- -¥-~8-vxw-2~x3+§~x~§-2x2 e 2 mmxz] 2 e
3 3 9 5 4 6 ], |180 /




Example (setup only, check answers with key and technology)
#6) Evaluate the surface integral _f xydS 8 is the triangular region with vertices
—~ § (1,0,0), {0,2,0), and (0,0,2)
, %[o[o‘z\ Yt med egmahon A fhe plave s
z;j‘vscvkrj o flom& , & l, 0&"27 <e, z“t&"z:’
‘ - I
(52 7=
S

P e = | = <\(I'L"z_>; 2Lz, \\?
D i

' 2 e
) h=c2,(, 1>
?‘i"*:- <lo,00 (9 thes ,@"’*W”) T

{loe zx-+y+%.¢-<&,!,/>.<’l,0,t>): 2 .i—M%&:?L

So #=2-2xY
(aﬂm&f"anl =& X, 4,27 Xy

7

e P - X
S\K xyd s jfky /;@?:‘{%)Z:H AdA ‘j’{’z: e Y I
5 | ‘

22X

= f | { xy [Caratipa dydx
- I p et
, 2-2 »
=g g g xy Ay dx wmf@i@
~ \ | = \%— Kuf-e J-gc:ﬁﬂh‘“&j)
el @%2 Z_;Z;dj _ [aarl J@x(z»ml"zé‘wfw})

\ l
@@LJ? i(‘/wi&w@) bo = 205 [ 3 x-5x X,
= 2[¢ () ’-)f‘ ( |

Online tech for integrals (Ti-92 emulator)

https://tiplanet.org/emu68k_fork/ « 'F3' to access calc menu

» 2'to integrate

* 'F3' and '2' again for 2nd integral

« enter nside integral using 'this form:
integrand, (letter of variable),(lower
limit),(upper limit) then close parenthesis.

» then enter a comma, and repeat for outer
integral.

the inner integral Ti-89 is the same except you
have {0 select "home' first



ﬁxample (setup only, check answers with key and technoiogy)
#9) Evaluate the surface integral ﬁ yzdS B is the surface with paramettic equations:
£

x=u', y=usiny, z=ucosv
0susl OsvsZ

2
Fluw)= <u?, uﬁm,uwsv>

vie ” 'N?))n. xry A4 |
= SV, — S V?
?- C—ZM ;mv c;;;v> ﬁ, -4‘0, MC&BVI 1/ BV

ru’*(v’ i 2w Smu wsv
UCoSY —~uSiav

(—us. \muws v 2u’ s,nvl Zu ausv>

= <—e,1[5: vital v} 20y 2u'zasy >
= LU, Zutsay,) Zuzmiv7

-

P
sl = ﬁu) (2250 (22mp0l = | GpsR * lutesy

- [ Gty =W = [ [T = wlie
j 5( ﬂﬁw) lagosw) wllita- d%ﬂlv setvy complote

uw&mm:oaﬁ s M
A
/\ 07 by hand g sinveosudv g u? {1 du
o

Tow )
° = 't
WA dgstuds o)
A“’ ,’fdw?u“'l
...-jl de SS‘ lh""‘[(,,/l) ’Xéﬂlw
o
v[)i:w'l‘ € |/ /(. L }/Z, w/;)dw .
) 37/ .
32 s
2 [ ’;,zx’\ﬁ % r"? & 57
31 e
=~ 133.!? L
22/ 3

i),

)@* .
AL
[
//”““"‘7




Example (setup only, check answers with key and technofogy)
#26) Evaluate the surface integral ﬂ}?’ +dS - forthe given vector field F and the oriented

& :
surface S. In other words, find the flux of F across S, F(x,3,z)= (‘xy, 4x*, y2>
Sisthe surface z=xe’ 0<x<l, G S y<1  with upward orientation.

vse Y“(X,y) 47” XL« >
B Cloedy  Fs <o, et

LT L 4 Q P 3‘ S
" z | 0632;4@) xe’, |
] | o

(2] Xeﬁ,
e lf,(P’ Z’Aﬁ |
o
=5 a"w <xy, Yx,ya-? - e?, ~xe I> y
—%ye’ Aidrhle X2
= THE -1l 4yt sl 2

‘i ] { (’Kyﬁy”"ﬂ%’fﬁﬁ@)%%x
f f [’Xﬁf —9x’e *)(xa@)dgd'y

- . ;Caq,w"\!‘i{w '
N Ne enden e ‘mg'@\
‘“; J a6 dgdx | st o
2 w D . e . . : ‘
l;"'e Jﬂi’lﬂa(@gj

N ’ " - . B s . N 3 wra
%’/ !)y&\;amé} ' @ = YXR J;\é j 0{9 - -4 )é[ &j]a - ‘{X C@
Qﬁ) 5 ‘er“f)@‘% = ‘(6'0 [x"lf = f"[ﬁ“‘"/>

=



16.8: Stokes' Theorem
Stokes’ Theorem extends Green's Theorem for higher dimensions

Green's Theorem stated that the vector line integral in 2D is the sum of the individual microscopic

circulations: v \\{U

In general, fo evaluate a line integral along a path, we had to use the more general...

™ P il and evaluate along { i multi i
_ A g the path (sometimes, multiple sections
!F (x,y)dr= j'F (F)er’ar | path)

But if we had a closed-path, then we could use Green's Theorem that allows us to integrate the
- expression for circulation over the area in the domain representing the bounded region. Even
though this was a double-integral, it was often easier than computing the line integral along the path.

We then defined curl of a field... ..and noted that curl represent the circulation concept
‘ extended to higher dimensions. .
curl
{curl - cross product) The gurl of a vector field at a point is a measure
cwd F=VxF of the tendency for a vector field to rotate:
ik The curl vector length indicates the
o 5 8 magnitude of the fendency to rotate,
= e as well as the direction,
ax oy 6Z f w5 The curl vector is perpendicular to
P g R W/ f ardF the plane of rotation at this point,
p oA . ' and indicates direction of rotation’
= <~%m?~g oF R f?-Q»-~--i-}-f?!-)~> ' according to the right-hand-rule.

d o0z o ax By
{output is a vector at each point,
a vector field)

It we put these two ideas together and use curl fo represent circulation in something like Green's
Theorem we get Stokes® Theorem:

Iﬁud?aﬂcurlﬁazdS:ﬂcuﬂ.};«dg.
C ) 8 5 '

Since IF- d;"mj.j?“- T ds
c ¢

Stokes' Theorgin says that the line integral around the boundary curve of S of the %ang_t_aptéai
component of F is equal to the surface integral of the normal component of the curt of F.

As with Green's Theorem, even though this requires evaluating a double-integral, this is often
easier than directly evaluating the single integral along the path.
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An example
Here is a first example for us o try. Evaluate IF «dr where F s <-~y x, zf‘)
j and C is the curve of intersection of the plane“y + z = 2 and the cylinder ayt=1
with C oriented counter-clockwise when viewed from above,
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What would be required to work the example directly
(This is much harder, don't use this method - but to see what this is equivalent to...)
First, we'd have to parametrize the curve with a single parameter, £ Start by finding an equation representing
the curve in 3D by finding the intersection of the ellipse and cylinder:

V+z=2 P |

P Quez subsiiture into x* »;«(z - z)?' we ]

Since the 2nd term is squared, we could reverse what it inside, to get the equation of the elfiptical curve in 3D:
x* +(.2—z)2 =1 = x* —l—(.z-—Z)2 =]

This is the expression of a circle not centered at the origin, We can use parametrization for a circle, but to
handle the offset center, let's define a new variable w, then complete the parametrization:

W=2z—2

circle: x* +(w):Z =1
x=rcosd =(1)cosd = cosé
w=rsind =(1)sind = sin 0

To return from w to z, we can substifute, then solve for x, y, and z to get‘ the final parametrization of the curve:
X =cosé
Wwez—2 =siné
z=2-+siné
y=2—z=2-(2+sinf)=—sind
r{6)=(cos@,—sind, 2+sing) 0<h<27

- B - (ourtis &)
Now we would compute the line integral directly using IF . dr ”IF (;)"” "dt C -
. .C @ o _ 1 o Z{-v}/ﬂ‘&/
r(6)={(cos8,sin 0, 2+5inG) > Lo [ 5115y |
r'=(-sin@,—cosd,cos8) | o | £ '
F(r)=(~(-sin6)", (c0s9), (2+sin3)2) ﬁg
=(~sin” 0, cos 8, 4+ 2sin @ +sin” ) r

Fer' = (——:&iufa @,¢c08 8,4+ 25 0 +sin* 0)- (—sin8, —cos 0, cos )

=gin® @ —cos* @+ 4cos G+ 2sinPcos @+ sin’” Gcos @
AIx

j’}é‘ -drxf(sin39woosz(9+4cos9+23in6‘00994«sin2 90039) do
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et 3 2Ax i3 2x 2w
- Isin’ﬂda—u I cos* 9 do+ I dcos & dO + j 2sinfcos @ di + Isinzﬂwsﬂ do
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Computing a line integral using a surface

instead integrating 'circulation’ over a surface;

Both Green's Theorem and Stokes' Theorem allow us to compute a fine integral around a closed path by
Green's Theorem

Stokes' Theorem

%

fﬁod?xﬂmrlﬁ-?d‘;mﬂcuﬂﬁ-dg
L & 8

Green's Theorem stays In the x-y plane Stokes' Theorem allows the path and
surface 1o be 3-dimensional

«but both allow us to compute a ‘path integral’ using a surface.
Computing a surface integral of curl using a line integral or normal vector

Stokes' Theorem can also be used in reverse...to compute the surface integral of curl F by instead.
computing a fine integral. ,

Iiud;r ﬁcuﬂl?~;;dswﬁmr1ﬁ"~d§
s §

easiest
When we do this, remember that;

iiﬁ “dr= _‘[ﬁ(?(t))'» ()t

in some cases, the line integral would be more difficult, but for the surface we can easily compute a
normal vector, n. Then we would use this form to compute:

‘ Jerﬁo;z’d wﬂcurll?'dg
£ &

easiest
Line integral value is independent of which surface is used

Since there is a single correct value for the line integral {path integral}, that means that integrating over
any surface which has this path as the boundary will vield the same result - independent of which surface
is chosen:

_ —- ~ - 1 Evasluating over any of these surfaces is a valid way
[Fdr=[feurl F -7 dS = fourl F-dS
& &

to find the fine integral vaiue because they all share
¢ the same curve, C.

Sometimes, we can take advantage of this o pick a particular surface which will be easiest to

express or integrate. For example, if the curve happens to be in a plane, we can just pick the
region enclosed in that plane to integrate over.



Example

#18) Verify that Stokes' Theorem is true for F = ( ViZ, x)
if S is the hemisphere x* +y? + 2% =1, y20
oriented in the direction of the positive y-axis.

« Calculate the line integral directly over the boundary curve.
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Example

#15) Verify that Stokes' Theoram is true: for K == ( y,z’,x)
if Sis the hemisphere x* +y* +2° =1, y20
ariented in the direction of the positive y-axis.

Then | want us to also do the surface mtegrai over another, easier, surface o see that tt
matches. .
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Example

#15) Verify that Stokes' Theorem is true for F = (y,z,x)
if Sis the hemisphere x* +y* +2° =1, y 20
oriented in the direction of the positive y-axis.

« Calculate the surface integral of curl over the surface as defined.

S{Mu: p{? ﬂ’c«f/rz TS
gurl ;P,- }52' 26 /::: <~’*i,~*'/;“‘"’/>

9 % K —
po=d —fa /amadﬁeﬁ  sortace o led °f uie 5/&@0(«-‘1 J wdr=
=L 5%«;55?}57 shfsey & 2 iy 2
,"ky\ ?'; =L oS coSo- p oS P S nd I,-»54W¢> z - & _}
o £B<Zh

= (-'s,}?;zfs.‘na} snf cSey o
W= le S
LoSftose  CHSFSAY ]
—spfsntr soapeter O
Ve eas
(s,fglcoge S’y sme, Cef.g— shfeosgp + 54 KM’G s afe €5>
R e (4" 7’;54::[9;, i p‘fma? Sondpet ra g s
W gl F Y 4“'( ~A{ "“’D 45.\1155356’ S';% ﬁf//’e’ 5’/”56
N -5,/-2([4 i —sendes@

Do S = )l/’ 9{0359-
qu,“;'h b= jzr/( (~sn Beoser —S WS “%”SM) ﬁ,\mwéa@
’E:a -——«i"r \ 'l}; u"'gw?fg
> ; Ao ”
( 5 6956'[ ¢ V) Sml#]ﬁ\“’}ﬂ /\'9[ })6 Y& 02¢7 [ 2, | j}L\QA‘;ﬂ 5§

,w*[%f)-—\eﬂ/@ J[r)+dq%? [wf? ‘J\nﬁj ’I

— ¢S o ( T) - &/WZ fz/>

@’tg eoser =5 /Hr)d%’« 2 (9'” reoso )"

rr/fm% +wf}/’ 54/’/9 449/6) = W[p)
;@ vf/f/"cz'//ﬂ Sotes” %a/m. ’




16.9: The Divergence Theorem
Let's review vector calculus... | |
In 16.1, we defined vector fields - the idea that at any point in the domain we could define a vector

with magnitude and direction. Easiest to image as a flow of fluid and the vector being a force
imparted by the fluid at the point in a particular direction.

In 16,2, we defined line (path) integrals - that you could move along a path and the line integral
would sum up the contributions of the little ‘forces’ from the vector field along the direction of the
path. '




In 16.3, we learned that the value you get from a line integral generally depends upon the path taken,
but for special fields, called conservative vector fields, the path is independent and depends only upon

the starting and ending points.

f\(g,z_) For b = (P,Q),the vector field is conservative if
. . o _%9
A »
(-5,-3) ‘ I For conservative vector fields, there exists a scalar

function f (x, y) called the potential function such that:

v ={f £)=F

Then, by the Fundamental Theorem of Line Integrals:

— — \
j F » dr = f (endpoint)— f (startpoint)
’ |

In 16.4, we defined circulation as the tendency of a vector field to cause rofation.
4 ¥

el

s

- /

F=(ys) P=(2.) P ()
I F '.;rw negative F .m 0 . l F *?Pm positive
[+ i sd .
..the ball would:
rolale clockwise not rotate mitate counler-cionkuiss

B

"noeilive ciroulation”

“negutive sironlation” "raro ciroulation”

...and said that the a line integral around a closed
path is fike a 'macrocirulation’ which is egqual to
the sum of all the 'microcirculations' enclosed by
the path, which produced Green's Theorem

o0 oP . :
Cﬁf’ dx+Qdy= ﬁ (“é“;“‘“‘é)’j} dd | This gives us a cholce: evaluate a line integral
¢ DA {often over multiple segments) or integrate the
circulation over the 2D area enclosed (often easier).




In 16.5, we defined divergence and gutl’

Divergence
(divergence - dtlof prodici)

Curl
o fear! - cross product)

il F=VxF

. el
divF =VeF i
i j ok
mgﬁﬁf.m‘?ﬁ.(pglg) <12 2 2
&’ oy oz & & o
. I 4 R
oP 00 OR Q
"oy % _[3R_20 op R 20 0P
oy &0 o Bx &y
(output is a scalar at each point, {outmt is & vector at each polni,
& sealar field) a vector fiely)
4 \ g 4
%@M M /
- ——— ﬂ*:'% . l*»
Yl 1 @Vm ! NS )G F
LN ¢ et ¥
4> > \J
/ / : \ \ gﬁggﬁ&ﬂ;ﬁ%&%ﬁ?ﬁg The cur? vector length indicates the magnitude of
{ J appedars fo b disappearing here the tendency o rotate, as well as the direction.
] - £86 DK 15 aCHg A5 2 sk

This point has ‘
net ffow out Is positive because field
appears to be generated here
« the field is 8cting as a "source’

The curl vector is perpendicular to the plane of -

ratation at this point, and indicates direction of
robation according to the right-handwule.

In 16.8, we defined parametric surfaces, the idea that just as we can parametrize curves using a
parameter { to traverse the curve, we can use two parameters 4, v to traverse a 2D surface.

In16.7,
surface (usually existing in a 3D space).

Surface inteqrat of the vestor function:

integral sums up the value of the
fungtion over this domain

intagral sums up the value of the
function over this domain

7 Goneyas=[[ 1 G =Flas

{3
*4

[JFeds = i

&

ﬁ ﬁ: . ;{dS where n =
s -or-

o ds = 1""‘:'“ wdA
gﬁ‘ ds j;j (7, x7,)

we defined surface integrals, which use integrals to sum something up over the entire 2D
We did this for both scalar functions and vector functions:

in the vector field
case, this is called
a flux integral
which represents
the sum of the
flow' of the amount
of the field which is
normal to the
surface, through
the surface,
summed over the
entire surface.



1n_16.8, we saw that Stokes' Theorem generalizes Green's Theorem to higher dimensions:

Green's Theorem Stokes' Theorem

&

[Fedi=[fcurl F o7 dS = [[our F oS
¢ §

§

Green's Theorem stays in the x-y plane Stokes' Theorem allows the path and
surface to be 3-dimensional

But these both give us a choice:
1) evaluate a line integral (often over multiple segments})
2) evaluate a 2D surface integral of the circulation {defined by the curl of F)
over the 2D area enclosed )

..whichever is easier.

16.9 - The Divergence Theorem
For our last CalcIIl topic, we define the Divergence Theorem (aka Gauss’ Theorem) which

Hﬁ*\dﬁ’mmdivﬁdv -
; ‘ |

E
The sum of fiuxes (outward The divergence of the
defined as positive) across all  equals  vector field summed over
surfaces of a closed surface the enclosed volume

oy
A 0 dS




For our last CalcIIl topic, we define the Diverg éncg Theorem {aka Gauss' Theorem) which

jjﬁd&“’:jﬂdivﬁ*’dr/
h E

Similar to Green's and Stokes” Theorems, the
Divergence Theorem glves us a cholce...

1) evaluate surface integrals for alf the surfaces of a closed surface

2) evaluate a 3D volume Integral of the divergence of F

~whichever is easier.

Geometric interpretation of the Divergence Theorem
The divergence of a vector field at a point is a measure of the field's net 'source’ or *sink’ flow at that

point:

E

This point has positive divergence
_ \ / net fiow out Is positive because Tield
b »

appears to be generated here
{: - the field s acting as a 'source’

/1NN

L 2

([ 5= [[faw Fav

by

Imagine is the volume was a tank which
could hold a liquid, but which allowed some

 liquid to escape through the porous sides

of the tank.

if there were hoses that allowed fluid to
enter the tank (sources) then the total
amount of fluid expanding in the tank from
the sources (the divergence) stimmed over
the volume must equal the total amount of
liquid that leaves the tank through the
surfaces.

The sum of fluxes (outward The divergence of the
defined as positive) across all equals vector field summed over
surfaces of & closed surface the enclosed volume

...mmeans the sum of all outward 'source’ flows from the points
inside the volume, equals the total outward flow of field
across the surfaces leaving the volume.




Ex #1. Verify that the Divergence Theorem is true for ;;: =(3x, xy, 2xz
if E is the cube bounded by the planes x=0, x=1, y=0, y=1, 2=0, and z=1.

The difficult side _U F+dS

s
requires computing surface integrals for 6 sides:

always "outward’

side 1: ﬁ'f:’*.
L1

-

3x,xy,2xz) . {0,0,1)dd

2xz dy dx = ”zx(l)dydx

o0

[ e

side 5: ﬂF g?

Total outward flow=41+0+3+0+ 12+ 0

[[F+dS=[[]dvFav
3 i 8 E
.
bt 61 :
#

side 2: ﬂ”}f .d§mff(3x,xy, 2xz)+{0,0,~1) dA
.8 §

miiwzxz dy dx m:{iwzx(a) dy dv

-[loaad]

side 4 ﬁ; od § = H (3x,xp,2xz) » {~1,0,0) dA
R4 s

=[f-sxa de=[[-3(0) dy

9/2



Ex #1. Verify that the Divergence Theorem is true for F= (33&:, XV, sz)
if E Is the cube bounded by the planes x=0, x=1, y=0, y=1, z=0, and z=1.

The easier side j._U divF dv

requires computing one triple integral:

»
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- Ex#2. Ver : i :
Verify that the Divergence Theorem istrue for F = ( X, X,z }
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A really interesting table in our textbook: Green's, Stokes', Divergence Theorem are higher dimensional
versions of the Fundamental Theorem of Calculus. In each case we have an integral of a "derivative™ over a

region on the left side and the right side involves values of the original function on the boundary of the region:

Y
‘ Fundamental Theoresm of Calculus [ Py dx = F ) - Fla) oo .
: : x{by
Fundsmentsl Theorem for Line Integrals iﬁ UF+ de = Fle()) — Flele) P ,
vio) ¢
i '8 L4 PV S
Green's Theorem g(@x §y>dﬁ | pax+ gay
“ Stokes" Theorem m&iz»&sw@?m
Divengence Theorem ' j{} div B dV = jj F-ds
¥ %
Homework notes: Start with #5, and do problems 1 and 3 last (they are the most work, but
they are important for the test). :
/N\i



