Calc3 — Lesson Notes - Chapter 16: Vector Calculus

16.1: Vector Fields

Function forms we've seen so far...

2D functions
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Sketching a vector field
To sketch, make a table of a few input values and sketch the resulting vectors at their locations:

Ex) Sketch ‘?P(x,y) =(-y,x)

F=<yx=

If this field represented current flow in water
=0, 0= and you placed a particle in it, it would rotate
<o: 1> about the origin.
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1 -1 <1, 1=

X
0
1
1
0

'
—x

i
L
Lo s coo =<

Vector Fields are very useful

Much of the universe can be modeled using vectors which vary at locations...vector fields are
extremely useful in many field.
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Earth's magnetic field

https://www.youtube.com/watch?v=El3WpL32UE

America's Cup boat design

https://www.voutube.com/watch?v=BVuWXApdfdE
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16.2: Line Integrals

Integral 'sum’ things...
Integrals can be used to sum the quantities produced by a function over a portion of the domain...

Single integral Double integral

Triple integral
y=1(x) z=f(x.y) air pressire P=f (x.7.7)

565 432

X 23./p
a b

[(s) e I (s3) a4 [ )

Line integrals along a curve

What if | don't we don't want to sum up the integrand values over a region, but instead want to sum up the values along a 1D path
that curves through the 3D domain?

We can do this, and although it really should be called a 'path integral', it is called a line integral of falong curve C

Triple integral Line integral along curve C

air pressure P= f(x,,2)

air pressure P = f(x,y,z)

2 13 13
12 13 13 14

12 15 @

In order to integrate along it, we will need to parametrize the path...



Review - how to parametrize various curve shapes...

In order to move along this curved path, C, but sum in a single dimension (a distance along the path) we need
to first parametrize the curve in the domain. Recall the following about parametrizing curves:

1) Circle in 2D:

x(!}:acosr

y[f]=asinf

where 0 <1 <27

2) Ellipse in 2D:

x(t)=acost

»(r)

x(t)=-acost —or- x(t)=asint

y(1)=asint
where 0 <t <2rx

y(t)=acost

v(t)=bsint

where 01t <2mw

3) line segment in 2D or 3D:

Srom (xy, y,) 0 (x,, »,)

(7 t07;)

) =(1=1)r, +1r,
x(t)

y(t)=(l—t)y0 +1 y,

where 0<t <1

(1-1)x, +2 x,

b cos,':i cos t+sin‘r=1
\ a
> (1 2 2
sint == a b
b
z
(t=1)
(t=0) P: (x1,y1,24
Po (¥o.yo.20)

4) circular paths in 3D (we'll need this when we add a dimension):

floating circle
Z

GED
/“\~» y

x(t)=acost
y(t)=bsint
z(r) =k

where 0<t<2x7

helix

x(t) = acost

y(t)=bsint

z(t)=t

where 0<t <2



So, how do we integrate along a parametrized path?

Back in chapter 13, we explored arc length and concluded that for a path C where we've
parametrized and have a position vector (vector function) #(z)...

...the tangent vector ¥(l) ata point is found by
taking the derivative of the position vector.

c If we divide by the length to create the unit - 0
& - r
tangent vector, we preserve the direction T(t)=
but lose information about the length. ()
X
b
But if we integrate the magnitude of the tangent vectors, I = Fr(f)| dt
that gives the arclength moving along the curve.
a
Line Integrals along C for Scalar Functions U TP W Ca—
air pressure P= f(x,y, z)
5 :
'y 12 13 sz‘ 15 15 12
a ; 122 13 13 1
! ds 12 15 ] : ’ 15 1 ]
We start with a small distance in y 1213 13 1
the parameter domain, df .. . —
12 1 13 15 13 12 " i}
X %ﬂ. 13 12 11 10
_If you multiply by the magnitude of E
the tangent vector, this scales to a __.then you multiply this infinitely small distance, ds, by
small distance on the parametrized  hg yalue of the integrand function (which is
SHIVE., parametrized) and use an integral to sum
F'| dt i N
If(x,y,z) ds = jf(x(f),y(f),z(f)) r'(r) dt
C a ‘

k]
a scalar function
(that has been parametrized)



A scalar function line integral example...

Ex) Evaluate Ixy“a's where C is the right half of circle x* + y* =16

C

The integrand xy4 is not a vector, therefore this is the scalar function case, so we use:

First, parametrize the curve:
x(1)=4cost
y(t)=4sint

where —

0N

<=

S

v(t)

4
dt

r(1)

x(r)

_[f(x,y,z) ds zif(x(t),y(t),z(z))

Next, build the position vector and take it's derivative:

= (4cost, 4sint) ?: (—4sint, 4cost)

Then, find the magnitude of the position function derivative:

=

\/(—-4Si11.!)2 +(4c.:054!)z =\16sin?1+16cos’*t =4

Finally, build the line integral and evaluate:

7
jxy"ds'= I (4ms£){4sinr)44dt=T
4 .

2

8192

Line Integral along C for Vector Functions

The quantity we want to integrate along the path may already be a scalar function, but sometimes we want to work with vector
fields. For example, let's say that we have a vector field which represents the electric field at any point in space, and we want
to know how much work it takes to push a charged particle through this field along a specific path.

electric field
~»
F(x,y.z)

path of the particle

The work done is the amount of the force which is in the direction of motion times the
distance traveled, and from earlier in the course we learned that this is found by
taking the dot product of the force vector with the direction vector.
Here that is the dot product of the Force vector and the Tangent vector:
= -
S

The dot product produces a scalar quantity, so we can use our integral structure to sum the individual
contributions to the work along the entire path:

g by -
IF(x,y,z) ds = IF(x,y,z)- r'(e‘) di
{ g a

This idea of summing the amount of a vector field in the direction of the path applies is many situation besides the idea of
work in physics, so this is the definition of a line integral along C for Vector Functions.



A vector function line integral example...

— —_ —
Ex) Evaluate j-F o dr where F(x,y,z)= <x+_y, y—z, z°
3 b N S T
C and Cis given by ?‘(:)_<r,z,r>0£rsl N 5oy N
The integrand is clearly a vector, therefore this is the vector function case, so we use: J F (x, y,z] ds = _l.F(x, y,z) L] r'(!) dit
a

Here, the curve has already been parametrized, and we have
the position vector, so we take it's derivative:

?’b(t) = <2r, 972 2r>

But before we can take the dot product, we need to evaluate the vector function at r{t) by plugging the
components of rinto the x, y and z of F:

F=(() (). (0)~().(¢
We then take the dot product: Fbr)- S

S—

2>:{1’+1’,:’—:2,f")

{

—_—

0)=(1+0,0 —1,1*)+ (2,37, 21)
=208 428 430 31" + 20 =58° —1* 4+ 27
Finally, build the line integral and evaluate:

JI'(S:5 =P +2r") dt = %

]

Line Integrals for Scalar versus Vector Functions
So there are two cases for line (curve) integrals, one for scalar functions, and one for vector functions:

Line integral for scalar functions

Line integral for vector functions

air pressure P = f(x,y,z)

’_f,..‘ curve C

b — — b_s —
;f(x,y,z) ds = If(x(t),y(f),z(!)) !"(!)| dt !F(x,y,z) ds = _[F(x,y,z) o r'(1)dl
C a L C a o
alreadyé scalar, s a vecto;, -
so multiply by the magnitude of r'(t) so need dot product with r'(f)

to get a scalar



Examples

example A) Evaluate jxyzz ds where C is the line segment from (-1,5,0) to (1,6.4)
c

example B) Evaluate Izdx-l»xaﬁzﬁ—ydz where C:x=1, y=0r, z=0 0<1<l1
.



Intuitive understanding of Work/summation around a vector field

To get a better feel for vector line integrals, let's consider the 2D case of a force field and
estimate what the vector line integral will be along different paths.

We need to estimate how much of the field is pointing in the direction of travel, and then add up
little segments along the path (in blue) (green indicates the vector is in direction of travel, red
against direction of travel, black dots are where field is perpendicular to travel).

14 1«7&_.. bpatt ¥
S o s 34 .
b F Rty | N

—_— |t
7/ —r\};//'

—\ ‘11

For this path, the field is aligned For this path, the field is For this path, the field is
with the direction of travel for most Perpendicular to the path for much of  almost always in the opposite
of the curve, so the line integral the curve (dot product = 0) and for  direction of travel, so this line
would be positive. the rest of the curve, there is about integral would be negative.

an even balance of aligned and not-
aligned field, so the line integral
would be approximately zero.

Line Integrals with respect to x,y,z

Sometimes the curve C is difficult to parametrize, or the problem is defined using functions for x
and y separately.

Scalar function case:

The curve could be a line segment in just the x direction or y direction, called line integrals along C
with respect to x and y:

[7(x) dt:j £ (%) y (1)) %' (t)de l f(xy)dy= if (x(2),y(2)) y' ()t

When these occur together, they are written as: J-P(x,y) dx + Q(x,y) dy
C

Vector function case:

If the vector function could be written as F = (P,Q,R) then: IF o dr = J-P dx+Qdy+Rdz
c G

To see why this might be easier, we'll consider an example...



Example...scalar function line integral wrt x,y
#7) Evaluate ny dx + (x y) dy where C consists of line segmnts from (0,0) to (2,0) and (2,0) to (3,2).

We're going 10 haue to evaluate each curve separately, but we don't have to
come up with some new parametrization of the curves with respecttot. We C;
can mstead just use X as the parameter:
Cq
nydx+(x y) dy = Ixycit+(x y)dy+ J..xyahH(x y)dy
G C,
on Cq: on Cy:
x = x (the parameter) x = x (the parameter)
y=0 0=<x<2 and y=2x—4 2<x<3 and
dx =dx dx=dx
Substituting: %=1 =2k
2
I xy dc+(x—y) dy = I (x)(0) dx-+((x)-(0)) (0)+ I (x)(2x—4) de+((x)—(2x-4)) 2dx

0 dc+ [ (26> —4x+ 2x—4x-+8) d

Il
2 Ry 13
N'-—‘-.u

j' Qi -6x+8
2

3
=[zx3 —-3x* +8in oL
3 . 3

Compare doing this with a parametrization using t:
i {Cz
B Q

dex+(x—y)aj:=Ixydx+(x—y)dy+jwdx+(x—y)a§z C4
c ¢ Cy
on C4: on Cz:
r—(l )+, (1 !)P"o+”]
= (1-1)(0, )+:<20) r=(1 1)(2,0)+1(3,2)
r—(2t,0) 0<t<l and r=(1+2,2t) 0<t<1 and
x=21 dx=2dt x=t+2 de=dt
=0 =0 _ -
Substituting: g . y=% oy =t

!xy dx+(x—y)dy= i'(zr)(o) 24t +((2t)—(0)) (0)+i(r+2)(2:) d+((t+2)—(2t)) 24t

5 . S0 you can reparametrize with t,
I J' 2{ A+ 2+ 4— 4t)d or just use x or y, whichever you
. 4 feel is easier.

[ (o2 25 24| 1
=0+ [(20 +20+4)dt=| 20 + £ v 4t | =—
) 3 3

0



16.3: The Fundamental Theorem for Line Integrals
Some fields are special...
Consider the following vector line integral: Evaluate Iyzdx+xdy but let's evaluate it over two

c
different paths between the same two endpoints, which we'll call curves C; and Cs...
Cy: line segment i C3: parabolic path x = 4 — ?
from (-5.-3) to (0.2) c. ’ from (-5.-3) to (0.2)

C:
(-5.-3)

These two paths would have different parametrizations...

use standard line segment: just use y as the parameter:

T=(1-1)(=5,-3)+1{0,2) r=(4-1,1)

= (5t -5, 5t—3) x=4-¢*
x=5-5 y:t
p=3i-3 3<t<2
0<r<l

Now that we have r, evaluate the vector line integral along each curve...

C;: line segment _— C: parabolic path x =4 — y?‘
from (-5.-3) to (0,2) c, ' from (-5.-3) to (0.2)

7=(5t-5,5t-3) 7 T=(4-1,1)

?:=(5,5> ("5§’|/2 T =(-2,1)

F=(y",x) T <y2,x>

F(r)=((5t-3) . (5t-5)) F(r)=((0 (7))

For=((5t-3),(5t-5))+(5.5) For= (e (4=} (-211)
=5(5¢-3)" +5(5¢-5) :-21(:2)+1( )
=125¢* —1251+20 28— 44

j(l25t2 —~125¢+20) dt i(_zf' 1 +4)dr

125 , 125 " In general, a vector line integral 1 1 .
= I:Tt 20:} along different paths yields a = [__14 _gta +4t}
3

0

different result - it is dependent
4.3 upon the path taken through the _|] 245

6 field. 6

Now let's evaluate along the same paths, but for this vector field: I(3+23€y)cix+(x2 _3})2)@

C
Cy: line segment ©2) C;: parabolic path= 4 — y°
from (-5.-3) to (0.2) e AN from (-5,-3) to (0.2)
C

(-5.-3)



We have the same parametrizations as before...

use standard line segment:

T=(1-1)(-5,-3)+1(0,2)

=(5¢-5, 5t-3)
x=5t-5
y=5t-3
0<r<I

just use y as the parameter:
= 2
= <4—t ,t>
x=4-¢
y=t
-3<t<2

...but the field is different, so we recompute the vector line integrals:

C;: line segment
from (-5.-3) to (0.2)
F={(5t-5,5-3)

(0.2)
C;

¥ =(5.5) chz
> 2 2 (-5,-3)
F=(3+2xy,x* -3)%)

-

"y

()= (3+2(5t-5)(51-3), (51-5) =3(51-3)')

= (50:2 —80¢+33, — 501 +40r—2>
P (50r2 —80¢ +33, - 50¢° +40t72> -(5,5)
= 5(50:2 —30:+33)+5(—50r2 +40r—2)

=—200f+155

1
[ (200t +155) ar
3 This vector field is special...we

get the same result integrating

2 1
= [_100" +155’:|n along different paths.,

Vector fields like this are called
conservative vector fields.

Conservative Vector Fields

C.: parabolic path x =4 —3°
from (-5,-3) to (0,2)

=(4-2,1)

(-24,1)
F- (3 +2xp, x° —3y2>
F

~

~4

-?(r)= <3+2(4—:2)(r), (4-22) 4(:)2}
=(—2z3 +80+3,1° —11!2+16>

-

F -r':<—2t3 +81+3, 4 -117 +16) - (-22,1)

=—21(-20 +8¢+3)+1(r* —117 +16)

=51*-27* -6t +16

Ly t— b

(5:“ 274 -6t +16) dt

= [:5 - T | 6t:|:

Conservative Vector Fields have the property that vector line integrals computed between
two points will have the same value regardless of path taken (as long as the endpoints are

the same)...they are independent of path.
This field is conservative:

?: <3+2xy, 2 —3y2)

This field is not conservative:

—

F=(y,x)

How can we tell if a vector field is conservative? The following is true for conservative vector
fields and can be used to test if a vector field is conservative:

oP o0

oy o

For I = (P,Q), the vector field is conservative if

How do we determine if a field is conservative in higher dimensions? (We need to talk

about that after covering a later section).



Checking the fields in the example:

]_;=<3+2xy,xzf3y2> F=<y2,x>
P=3+2xy Q=x"-3) P=3y? O=x
a—P=2x a—Q=2x ﬁ=2y @=]
oy ox ay ox
oP _oQ P 30
P —t — ;t e 2
dy x dy  ox
conservative not conservative

The Fundamental Theorem of Line Integrals

If a vector field is a conservative, not only will you get the same vector line integral regardless
of path taken, but there is an alternative way to compute the vector line integral which is
sometimes easier.

Remember, the Fundamental Theorem of Calculus (part 2)?

_Tf(x)dx:F(b)—F(a)

We use this whenever we evaluate definite integrals, and it states that we can sum the effects of
the function over the entire integral by plugging the endpoints into the antiderivative of the
function. (We only need to evaluate at the endpoints.)

Something similar applies for vector line integrals, but only in the case of a vector
line integral for a conservative vector field:

If_': dr = f (endpoint)— f (startpoint)
c

This function, f, is called the potential function of the field, and is conceptually
similar to the 'antiderivative’ of the field.

Potential Function for a Conservative Vector Field

A theorem states that if a field is conservative:

There exists a scalar function /(x, )
such that: v =<fx, fy) -F

...and this scalar function is the potential function which is used in the fundamental theorem of
line integrals to compute the vector line integral.



Computing the Potential Function of a Conservative Vector Field

—
For our conservative field example: F = <3 +2xy, X% 3y2>

X —
We know a function,f(x,y), exists such that Vf = <fr, fy> =F

Starting with this definition, we know: £ =3+2xy
f,=x"=3y
We start to find f by taking the antiderivative of f, with respect to x:
f(xy)=[ 1, d=[(3+2xy) dx

=3x+x’y+C

This integration constant, C, is a constant with respect to x, but could be a function of y, so we
replace it with some currently unknown function of y:

f(x,y)=3x+x2y+g(y)

To establish g(y), now we take the derivative of both sides with respect to y:
d d
—| f(xy)]|=—3x+x"y+g(¥
I L] 35022 ()

£, = x+e'(y)
But we know what f, must equal from the field: x> —3y* = x* +g’(y)
so:  g'(y)=-3)
Now we can take the antiderivative of this with respect to y:
[g'(y)dy=[-3y"ay
g(y)=-»"+K
Substituting this into the earlier expression for f(x,y) gives us the potential function:

f()c,y):3.7c-|-x2y—y3 +k

Evaluting a vector line integral using the Fundamental Theorem of Line Integrals

Evaluate _[(3+ 2xy)ds+(x’—3y”)dy  along the two paths: B (0.2)
C
First check to see if the field is conservative: c,
_ _ 2 a2 so the field is ‘ x=4fy2
P=3+2xy Q=x*-3y opP _ 90  conservative, and we (-5:-3)
OF 2x g 2y dy ox need only evaluate at
oy ox the endpoints.

Because the field is conservative we can find the potential function (shown previously):
f(x,y) =3x+x’y—y +k
Now we can use the fundamental theorem of line integrals to evaluate the vector line integral:

_[1?-3; = f (endpoint) - f (startpoint)
[B+2)dc+(x* -3y* ) dy = £(0,2)- £ (-5,-3)
=[3x+x2y—y3]

=(3(0)+(0) (2)-(2)' )~ (3(-=5)+(-5)' (-3)-(-3))
=—8+15+75-27
(along all paths between these two points)

0,2)
-5,-3)



Vector Line Integral for conservative field around a closed path is zero

If the starting and ending points for a vector line integral (a.b)
are the same, we say the path is a 'closed path'. /-

In that case, if the field is conservative, we can evaluate (/'\)

using the Fundamental Theorem of Line Integrals:

IF « dr = f (endpoint)— f (startpoint)
C

...but since the points are the same, the result will always be zero around a
closed path.

Tree for evaluating line integrals

Is integrand a scalar or vector function?

scalar function f(x,y) vector function ?(x,y) ={P,0)
b
_ % Is the field conservative?
lf(x,y)ds-_{[f(?”r dt @;t@ P o0
dy ox oy ox
no yes
b —
andr:]F(}‘).r’dt‘ IF'erfTénd)—f(Sfaf‘f)
C a E —
where Vf = F




Examples
#3) Determine whether or not l-:'is a conservative vector field. If itis, find a potential function f

such that Vf =F
—
F(x,y):<2x—3y,—3x+4y—8>

—
ther or not F is a conservative vector field. If it is, find a potential function f

]

#4) Determine wh
such that Vf =

F’[x,y) = < *cos y, e sin y)

=

#12) Evaluate the integral IF .« dr F(x,y) = <x2, y2>
=

where C is the arc of parabola y =2x" from (ﬁI,Z) fo (2,8)



16.4: Green's Theorem

The concept of circulation
Consider these 2D vector fields:

1. / % / 1
— / P
- 2‘ 2 TR
F=(3-x) F={2,2) F=(-y,x)

- F «r" will be positive when the path direction and the field direction are aligned, negative when in
opposite directions, and zero when perpendicular.

When these are summed over the entire path with an integral, the result will be:

— — — — — —
jF * ¥’ = negative J-F e’ =0 IF- ' = positive
C c &

Now what if we imagine these fields represented current flow of a body of water and we placed a ball in
the water atythe origin...

¥

—: — —
F=(y,—x) =(2,2) F=(-y,x)
— — — — —
JF «¥" = negative IF .?: 0 IF 7' = positive
(] C C
...the ball would:
rotate clockwise not rotate rotate counter-clockwise

"negative circulation" "zero circulation" positive circulation



'Microscopic’ circulation

If you had many really tiny beach balls, they would all rotate counter-clockwise in a positive circulation
field, even if they were not at the origin.

y More force on top

I

Imbalance effectively causes
_________________________ counter-clockwise rotation.

Less force on bottom

This is because there is an imbalance in the amount of force on the ball on opposite sides.
Horizontally, there are higher forces above and lower forces below, so the effective motion is left
on top, and 'less left' (effectively right) on the bottom.

The same is true for the vertical forces and the imbalance also causes counter-clockwise
rotation.

'Macroscopic' vs 'Microscopic' circulation

If you considered every point Then if you are taking a vector line integral for a closed path in this

in a region within a vector field, field, you can think of this as summing the contributions of all the
every point would have a 'microscopic’ circulations that are within the region enclosed by the
'microscopic' rotation: path...

¥ y

...the total could be considered the 'macroscopic' circulation and its value

would be positive if the majority of microscopic circulations were positive,

negative if the majority of microscopic circulations were negative, and zero
if the microscopic circulations balanced out to zero.

A great website with even more detail and visualization tools:
https://mathinsight.org/greens theorem idea
]
An expression for circulation
For us to mathematically sum the individual microscopic circulations, we need a mathematical

expression for circulation. Let's return to the @Ea that imbalance in force on opposite sides of a point
causes rotation. If our field is defined to be: F = (P, Q)

These purple horizontal arrows for top and bottom would be changes in
the field are really changes in the x-component of the field as we move

in the y-direction...
¥ Combining these gives an

_AP ...and would cause a positive circulation expression for the circulation at

if this change was negative (the field

was pointing in the negative x-direction): Hhis. pram:
Maore force on top
y e
- oy ox Oy
Less force on bottom . .
(Seem familiar? Our conservative

The vertical component of the field would work similarly, imbalance field test: conservative fields
causing rotation, but now this would be changes in the y-component of have circulation = 0)

the field as we move in the x-direction...

...and would cause a positive circulation
if this change was positive (the field was
ointing in the positive y-direction):
1 AQ Poiting p y )
Less force on left

Y
ox

More force on right

Ax



Green's Theorem

Now we can define the structure and theorem for this section. Green's Theorem is a mathematical
statement that the vector line integral in 2D is the sum of the individual microscopic circulations:

9Spdx+Qaj; jj(@-%)]m

Green's Theorem only applies when the field and path are 2D and when the path is counter-clockwise
(known as 'positive orientation'). This is why the line integral is written with a modified notation:

$Pdc+Qdy or $Pdc+Qdy

(If the circulation is in the clockwise direction, you must multiply the result by -1 to account for this
negative circulation.)

Tree for evaluating line integrals

Is integrand a scalar or vector function?

scalar function /' (x,y) vector function F(x,y)=(P, Q)
b
= Is the field conservative?
flx,y)ds=\|f(r)|rdt
1() !mll oP 80 oP 80
£ —_— _———
oy ox oy Ox
no

s C a closed pa J' Fedr= f(end)- f(start)
C

where Vf = F

yes
Green's Theorem

[F.dr='jF(r).;7d? (f)deJery J'j'[aQ Z‘:JdA

no




Examples
#1) Evaluate the line integral (a) directly and (b) using Green's Theorem.

@(x—y) dx+ (x+y) dy C :circle with center (0,0), radius =2
c

(a) directly
conservative? P=x—y QO=x+y

oP 0
—=-1 # % _ 1 so not conservative, can't use potential function

¥

oy Ox 2
parametrize C: x=2cost y=2sint 0<1<2x /

r=(2cost,2sint)  r'=(-2sint,2cost)

F(r)={(2cosr)—(2sint), (2cost)+(2sint))

F or'=(2cost—2sint, 2cos!+2sin!) » (~2sint, 2cos!)
=—2sin#(2cost—2sint)+2cost(2cos? +2sint)

= —4sinfcost+4sin’ t+4cos’ { +4sinfcost

=4
2z 2r
(f)(x—y)dx+(x+y)aj¢: J-F o7 :J- 4487
C 0 0
Y
(b) using Green's Theorem 21

N

C
sy ourey {1, fravos|[F-5)u

AN

=

oy ox
99 P _\_(_1)=
0 () (-1)=2

2x 2

P(x—y)ds+(x+y)dy=[[2d4= [ [2rdra6

87

_ zzf dﬁj[r dr =2[0]" B ” ] _5(24){(2)



Examples
#3) Evaluate the line integral (a) directly and (b) using Green's Theorem.

(ﬁ(xy) dx+(x2y3 ) dv Cis the triangle with vertices (0,0), (1,0), and (1,2)

C



Examples
#4) Evaluate the line integral (a) directly and (b) using Green's Theorem.

35()6) de+(y)dy C consists of the line segments from (0,1) to (0,0) and from (0,0) to (1,0) and
% the parabola y =1 —x? from (1,0) to (0,1)




Examples
#8) Evaluate the line integral using Green's Theorem along the given positively oriented curve.,

@(‘xe—Zr) dx+(x4 +2x2y2)afy C is the boundary of the region between the circles
% X+y =1and x*+y’ =4



Examples
#12) Evaluate the line integral using Green's Theorem.

-
F(x,y)= (yz cosx, x* +2ysin x} C is the friangle from (0,0) to (2,6) to (2,0) to (0.0)



16.5: Curl and Divergence

Definition and computation of Curl and Divergence
Recall the use of the symbol 'del' to define the gradient vector for a scalar, multivariable function f
o of of
V = 3 T L (e s~
4 <f"fyf> <8x oy 8z>

...and the del symbol can be thought of as a vector of partial derivative operators:

R
Ox 0y Oz

Now that we are working with vector functions, what happens if we take the dot product or cross
product of del with the vector function? We get what is called divergence and curl:

Divergence Curl
(divergence - dot product) (curl - cross product)
diszvaﬁ curl F=V x I~

of of @ ik

N N

ox oy &z

= B_P + a_Q i a_R P QO R
ou _[r 20 ap_or 20 op
(output is a scalar at each point, \oy o2’z ox’ax oy
a scalar field) (output is a vector at each point,

a vector field)

—

Ex) Find the divergence and curl of the vector field F = <er"’ ,ye:, ze”)



P 80 R

Meaning of Divergence dv 2P, 20 oR
éx dy &z

The divergence of a vector field at a point is a measure of the net flow out of the field

<,/
\ ‘ o ~
Vo TN
e . / N
i [\
1
7 by N N
;i \ This point has negative divergence
|' net flow out is negative because field
" appears to be disappearing here
- the field is acting as a 'sink’

This point has positive divergence
net flow out is positive because field
appears to be generated here
- the field is acting as a 'source’

Note: every point in a field has a divergence value, and its value is a little more subtle, in reality, than
just flows in' or ‘flows out’. For example, if you had a field like this where the field is flowing to the right,

but with smaller magnitudé on the left and larger magnitude on the right

.

flow out:

...than this point would also have a positive divergence, because in its region 'less’ is flowing in than is
flowing out due to the imbalance in magnitudes. This region is behaving as if it is 'sourcing’ field because

more appears to be leaving than entering.

Meaning of Curl
dy 0z 0z ox ox dy

The curl of a vector field at a point is a measure of the tendency for a vector field to rotate

The curl vector length indicates the magnitude of
the tendency to rotate, as well as the direction.

/ \ The curl vector is perpendicular to the plane of

rotation at this point, and indicates direction of
\;/ 'm‘.’ F

rotation according to the right-hand-rule.

Curl is like a 3D version of circulation

If the rotation at a point is in the x-y plane, then the curl vector would only have a z-component, and
would equal our expression for circulation, so you can think of curl as the 3D equivalent of

circulation: z
curl F=VxF

i j ok i j ok
curl F 2 2 2 |a 2 2
A o&x oy oz| |[ex oy oz
— g P o Rl |P 0 0

'\\ oQ orP

sl (0055

\‘_../ ox oy



Examples
#2) Evaluate the divergence and curl of F (x,y,z)= <x2yz, xy’z, xyzz>

If a vector field is conservative, curl = 0

It can be shown that if a field is conservative (and therefore there exists a potential function),
then the curl will be zero.

Technically, however, the converse is not necessarily true, just because a field has a zero curl
does not guarantee that the field is conservative. But checking curl = 0 can be used to show
conclusively that a field is not conservative.

In practice, when curl = 0 this is a strong indication that the field is conservative, so we should
attempt to find a potential function. If we are able to, then this does indicate that the field is
conservative.

When a field has curl = 0, it does not have a tendency to rotate, so we say the field is
irrotational.

What does divergence = 0 means?

If you imagine that a field represents something like a physical medium (such as a fluid or a
gas), then div F represents the net rate of change with respect to time of the mass of fluid (or
gas) flowing from a point, per unit volume.

If the divergence is zero, that means there is no net flow out of the field at that point...any 'fluid’ that

is flowing in is all flowing out, which means there is no 'compression’ of the field (accumulation of
fluid in that spot).

Therefore, when a field has divergence = 0, it does not compress, and is called
incompressible.



Examples

Ex) Determine whether or not the vector function is conservative.
If it is conservative, find potential function fsuch that F = Vf

F(x,y,z) = (x, ¥, z}



Vector form of Green's Theorem
From the previous section, for 2D, Green's Theorem says the line integral of a vector over a

closed, counter-clockwise, path can be evaluated by integrating the expression for circulator
over the enclosed area:

oQ oP
jroagraoa {35

If we wrote this using curl...

...we get the vector form of Green's Theorem:

(ﬁF-dr :H(curl F e k)dA

Videos about the concepts of divergence and curl

The YouTube channel 3Blue1Brown is run by Grant Sanderson, and excellent math/science video
producer who did most of the Calc Ill videos for the Khan Academy website. His separate channel has
some really excellent videos, with very good animations and explanations, including this one about
divergence and curl:

https://www.youtube.com/watch?v=rB83DpBJQsE
@

Div of curl?

Taking the curl of a vector field (at a point) produces a vector, so the result for all points is also a vector
field. You could then take the divergence of this curl of the vector field.

But the result can be shown to be (theorem 11 in the textbook):

If F= <P,Q,R> is avector field on R’ and P,Q, and R
have continuous second —order partial derivatives, then
div curl F =0




16.6: Parametric Surfaces and their Areas
Parametric Surfaces are similar to Space Curves

We've encountered the idea that you can use a parameter, ¢, to 'move along' a space curve...

Space Curve

\We only need one dimension in the 'parameter domain' to move
along this space curve to produce all points on the space curve...

C
parameter space curve
domain
P(x(t), yff),yz(f))
— 7 (1)
r(t) =< x(t), y(t), z(t) = —e—— ¢ — s

P(x(0), »(1). 2(1))

...and you can think of the position vector, r, as something that
converts t values in the parameter domain to points on the space
curve (like a function).

Parametric equations:
x=xe]
y=y(1)
z= z(t)

If we need to represent a generic 2D surface in 3D space, to cover all points on this surface, we will
need a 2D parameter domain, so instead of parameter, £, we now define parameters v and v...

Parametric Surface We need two dimensions in the 'parameter domain' to move
across this surface to produce all points on the surface...

V), y(u,v), 2(t,v)) parameter parametric
domain surface

= (u,v), z{u,v))
r (u._ v) ‘
—_—

r(u.v)

y ...and you can think of the position vector, r, as something that
converts points (u,v) in the parameter domain to points on the
parametric surface (like a function).

Parametric equations:
x=x(u,v)
y=y(u,v)
zZ= z(u,v)

Grid Curves

If we hold one of the parameters constant and vary the other one, this will trace out a curve along the
parametric surface, which is called a 'grid curve'.

grid curves helding v constant and varying u

grid curves holding u constant and varying v

r(u,r)




Examples
#1) Determine whether point P lies on the given plane.

7(11,1)):<2u+3v,1+5u—v,2+u+v> P(7,10,4)

Parametrizing Parametric Surfaces

Parametrization of a parametric surface means finding two parameters which span the domain and
then a set of functions of these parameters to produce the coordinate values for each dimension in the
output space where the surface resides.

Because there are different possible choices for the parameters, parametrizations of parametric
surfaces are not unique.

Let's consider some common surfaces and their parametrizations...



Parametrizing Cylinders
2

X+yt=a

X

For the plane with circular grid curves, we can use polar parameters, @, 6. The last dimension is not a
parameter, but is used when specifying the point in 3D space...

—
Possible parametrizations: ~» (z, t?)

x=acosd x=acosf x=%
=gsind _
Y these could be y=y y=acos@
z=z reversed - just . 0
depends upon z=asind z=asinf

which axis you
want to define as
the reference for @

Parametrizing Spheres

| - ¥+y'+z2'=a

| |

| e

\ / ¥
)<\L¥ .
X

For spheres, we can just use polar coordinates, and use the &, ¢ angles as the parameters,
with the radius being a constant on the spherical surface:
- x=asingcost

r(¢.0) v =asin gsin @
z=acosg
Parametrizing Cones

_ {2 2
Z=AXTFY For the cone, there are two ways we could go...

z
...we could use the fact that the grid curves are circles and use polar
coordinates as the parameters:

_ x=rcosf
y r(r,&) y=rsinf

Z=r

¥ ...or we could take advantage of the fact that the surface is
expressed with z as a function of x and y and just use x,y as
the parameters:
Ty
r(x,y
y=y

z=yx* +)*

This illustrates that there are often multiple possible parametrizations. You just need any two
parameter variables and a set of equations such that if you vary the two parameters over all
possible combinations of their values, the parametric equations map out points that cover the
entire parametric surface.



Parametrizing Cones

N 7, .2
z=Ax"+y y=+x+2 X=4[y +z
z

Z
%{y y ; ‘/]—y
X X x &

Possible parametrizations:

7(r0)  Tx) o) Tx) o) )
x=rcostd A=X x=rcost X=X Y= x= y2+22

y:rsin@ y=y — — 2 2
S ] i = ymresdl ey

z=rsind z=:z s=rsing® z=z

Parametrizing General Surfaces

For 98% of surfaces, it is possible to express the surface as z = f(x,y)

and in these cases, the simplest way to parametrize is to just use x,y as the two parameters and make z a
function of these:

F=x
7(x,y) Y=y
z=f(xy)

Parametrizing a Plane
Once we have the equation of a plane in the form ax+by+cz =d
we can choose x,y as the parameters and solve for z in terms of these to parametrize:

xX=Xx
r(x,») y=y
zzd—ax—by

c

Examples

#19) Find a parametric representation for the surface of the plane that passes through (1, 2, -3)
and contains the vectors (1,1,—1) and (1,—1,1)

(method different from textbook solution)



Examples

#21) Find a parametric representation for the surface of the part of the hyperboloid x*+ y2 -z* =1
that lies to the right of the xz-plane.

Restricting the parameter domain

The parameters may be restricted to only a portion of the parameter domain and the result is that
only a portion of the parametric surface is produced.

Consider the sphere: x” + y2 +z2°=a’
that has been parametrized as ?(gﬁ,ﬂ) = {asingﬁcos 0, asingsin @, acos 9)

If we allow the parameters to vary as...

7
0O<g<r 27 | l ._ ...this produces the entire parametric surface.
0<0<2n o0 .4
0 T | 2~
\ Y
; / -
But if we restrict the parameters to... ) )
9 ...this produces only a portion of the surface.
0<d< T 2
<¢< 3 B
T 3
0<<— 0 p
3 0 7 7
2

NOTE: paramefrization isn't complete unless the limitations on the parameters are also specified.



#24) Find a parametric representation for the surface of the part of the sphere x> + y2 +22 =16
that lies between the planes z=—-2and z =2

#4) |dentify the surface with the given vector equation _r.(u v)=(2sinu,3cosu,v) 0<v<2



Tangent Planes

If you hold parameter v constant and traverse across u_l.r] the parameter domain, this traces curve
C; onthe surface. The tangent to this curve would be ¥ a vector whose components are found by taking

the partial derivatives in the x,y, and z directions, but as we move in the u direction, so we call this
vector 7, and define it as follows: —_ <6x dy 8z>

61:’@’ ou

Similarly, if we hold parameter u constant and vary v in the parameter domain, this traces curve C; on the
surface which has tangent vector 7, defined as:

- [éx Oy Oz
=\ v o
(Although these don't have the 'prime’ notation, we understand these are derivatives due to their subscripts)

Fy
—_
r,

i

(tg, o) 1 ./'\\(
1 |

rl
=1 . .CI ™
r \
D u=u, —— \
0 F

(1] u ———
C——
v ¥

Tangent Planes

These two tangent vectors are both tangent to the surface at point Py so we can use these vectors
to define a tangent plane...

(1. Ug) | | e
! :

U=ty /€,

D U=ty

...and we can find the normal vector for this plane by taking the cross product of these two tangent
vectors:

Normal vector which defines tangent plane to
a parametric surface is:

n=r,xr,




Examples
#34) Find an equation of the tangent plane to the given parametric surface as the specified point.

x=u’, y=v*. z=uv: u=1 v=1



Area of a Surface

Further, if we go a small amount in the parameter domain, Au we travel AU;; in the direction of this
tangent vector, and similarly travel AW‘V along the other tangent vector.

’)l\ = —

s Avr, Aur,
B e N

|7 8
F fid | \
S The area is this infinitesimally small rectangle can
be found by taking the magnitude of the cross-
0 c:\ product (from earlier):
“\__\_‘\—‘-—‘—‘_-‘- -
l/ .- area = |(Au€) x (Avr,)
= ;'; X ;': AuAv

In the limit as the size of this rectangle approaches zero, the rectangle is a good approximation for a

small portion of the area of the surface, so to find the total surface area, we use a 2D integral to sum
these areas:

dA

E XF

Areaof Surface: 4 (§') = ,U
D

(D is the region in the parameter domain)

Area of a Surface: special case where z = f(x,y)

In the special case where the surface represents a function where z = f(x,y)
the parametrization of the surface would be: _I:(x,y) X=x y=y z= f(x,y)

...and the tangent vectors would be: _: <@, @, @> = <§, @ Qf(x,y)) <l, 0, 6f>
Ox Ox oOx ox Ox Ox

~%ggg%gﬁwwy@&)

Y\ iy \y oy .Y

...and the cross-product would be:
i j k
rrxr,=|1 0 g= —g,—@,l
7 ox ox oy
0 1 g
oy

...s0 the area would be:

...which can be written...

&Y (azY
A(S) = ‘ﬁﬁ\/l +(6x} +[6y} dA _..the formula used in Calc1/Calc2

for surface area.




Examples
#38) Find the area of the part of the surface of the plane 2x+5y +2z =10
that lies inside the cylinder x” +y7‘ =9

#42) Find the area of the part of the surface z=1+3x+ 2y2
that lies above the triangle with vertices (0,0), (0,1), (2,1)



16.7: Surface Integrals
Surface Integrals of Scalar Functions
In 16.2 we defined line integrals for scalar functions, initially for a 2D scalar function...

Line integral for scalar functions

Zo= f(x._v]

[ (5 e = [ (x(0), 2 (0)

C

|r" dr
curve C

integral sums up the value of the
function over this domain

...which you can think of this way...

: z=f(xy)
parameter domain function domain ey AP
fncton domein wr lo | Pts@pe
- -
” > ¥
——tep | |J"| dt
a b curve C

Although it is a little harder to picture, we said in 16.2 this can be extended to higher dimensions...

integral sums up the value of the
function over this domain

function domain

z

parameter domain

—_

dt

[ £ (2) ds = [ £ (x(0), 90, 2(1)

[+ a

r'(t)‘ dt

A line integral over a curve is summing the scalar numerical values of a multivariable scalar
function over some 1-D curved path through the domain of the function.

The integrand is the function value at a point multiplied by the magnitude of the derivative of the
position vector which is the non-normalized tangent vector in the direction of { moving along the

curve.



In this chapter, we now extend this concept to a 2D parameter domain, which means we define a 2D surface in
the function domain, and therefore we are now summing the scalar function value over a 2D surface:

integral sums up the value of the
function over this domain

function domain

as = |7;' x| dA
]

parameter domain

surface S

The area of the 'patch’ of surface covered by a small area dA in the parameter domain would be approximated
by dS = [?u x?{ dA, a small portion of the tangent plane at that point.

Summing the values of the function over this surface gives the surface integral of the scalar function:

[[7Gez)as = Ij £ (7)), x7) dd

Surface Integrals of Vector Functions

We can define something similar for vector functions.

function domain integral sums up the value of the
I function over this domain

parameter domain

dt

- t

J';"(x,y,z) dr = ]"E(r) o7 dt
c a

Earlier, we said for a vector function, a line integral over a curve is now summing the amount of
the vector field pointing in the direction of the curve at each point over some 1-D curved path

through the domain of the function.
The integrand is the dot product of the field vector with the direction vector (to get the component

of the field pointing along the path).



For the 2D surface version, we use a 2D domain region, but now we are summing components of the vector
field instead of numerical values of a scalar field. But what is the higher dimension equivalent of taking the
component of the field in the direction of the curve?

We still take the dot product to get the component of the field in a
direction, but now the direction is the normal vector for the surface,
n.

This presents a small complication...there are really two normal

vectors for a surface, one on each side. We define n as the vector

perpendicular to the tangent plane and point 'outward’ if you viewed
= the surface as a sphere: or upward for a plane: z

Uoosnive n positive n E
¥

X
In fact, for a curved surface we define positive and negative orientations as follows:

positive orientation for this surface negative orientation for this surface

integral sums up the value of the
function over this domain

parameter domain

Summing the values of the components of field that are normal to the surface (in the positive orientation
direction) the over this surface gives the surface integral of the vector function:

.UF'dS =J;J.}_‘:'i_1.dS wh&wn:%&

v
—
v

u

surface integral of the vector function is also known as the 'flux of F across §'

Using the fact that dS = ‘Z X7, ’ dA

r, xry| dA
u u v

HF-dS :_LI F(r(u,v)).% dS:JJ F(r(u,v)).%

s |?’ 'r x

HF «dS = _UF . (Fu X r;,) dA is a form that is easier to use in computation
S s




Physical Interpretation of Flux

You can think of flux (surface integral of a vector function) as
meaning how much of the field goes 'through' the surface.

Depending upon the orientation of the surface, you could have
maximum flux or minimum (maybe even no flux).

Imagine a fan blowing air and the flow of air being represented by
a field:

The field is aligned with
the normals to the
surface - lots of field
moving through the
surface.

The field lines are parallel to
the surface (zero component in
the normal direction of the
surface) - no field moving
through the surface.

Surface with maximum flux Surface with minimum flux

Summary (so far)

Surface integral of the scalar function:

Surface integral of the vector function:

integrai_sums up the value_of the integral sums up the value of the
function over this domain function over this domain

. = -.-_’ h :M
[[7(x.y.2) as= || £ (F(w.v)) . x7,] dd ISIF ds IJF ndS wheren =g
s D o

”F-dS =_|;:[1_5-(7’; x7,)dA




Example

#7) Evaluate the surface integral jyz ds

.[J-f(x,y,z) dS=_[Jf(?(u,v))E .x;':’(M

S

where S is the part of the plane x+ y+z =1 thatlies in the first octant.

z

Parametrize the surface using x,y:

The surface integral:

g f(r (%))

?(x,y,z)z <x,y,l—x—y)

>Y Derivatives on the tangent plane:

T=(0-1)  F=(oL-1)
The surface normal vector: Magnitude:
i j k
rxr,=|l 0 -1=(LL1) rxxry‘:\/12+12+12:\/§
01 -1
1.].—.‘[ y
rrxry|dA:' Iyzx/gdyaﬁc L y=1-x
00
l.l—x X
=] ] y(-x-y)3 dy v
00
l.l—x
B[y y) e

B 1
_.Lx4+lx3_lx2+lx :\/_5.
L 24

00




Example
#19) Evaluate the surface integral for the given vector field and the oriented surface

F(x,y,z)=(xy,yz,zx) Sis the part of the paraboloid z=4-x" -3 that lies above

the square 0<x <1, 0< y<1 and has upward orientation.
] _UF odS = HF (r, xr,)dA

L )

Parametrize the surface using x,y:

?(x,y,z) = <x, y,4—x" —y2>

Y ¥ Derivatives on the tangent plane:

. =(1,0,2x) 7, =(0,1,-2y)

The surface normal vector:

i j ok
Ex;;zl 0 —2x=(2x,2y,1)
0 1 2y
The surface integral:
¥
[[7-as [jFcxe)a 1
S
= I( ,2x)+(2x,2y,1) dA > X
7 0 1
=.' (2x2y+2y z+zx)dA

| (2)/:2),H1r2y2 (4—_11:2 —y2)+(-!l—x2 —yz)x) dy dx

(23&:2y~!~8y2 -2x*y* -2y +4x—x° —xyz)ajzdx

i
|

= oF

2 8 2 2 2 5 3 1 3 I
_.Iy 3}'3 3xy3 5_}' Xy—XxX Yy 3.]:].? i

c.

1/
= [l »2 +§_2x2_3+4x—x3—1x)dx
-\ 3 3 5 3

1
=|:1x3 +§Jt:—z)¢:3 —gJ|c+2x2 —lx" —lxz] = He
9 5 4 6 1, |180




Simpler forms if you can parametrize as <x, y, g(Xx,y)>

These first two examples we actually somewhat special: it was possible to parametrize the
surface by expressing one variable in terms of the other two, for example z = g(x,y). When
this is true, you can use a simpler version of the surface integral formulas (shown here for
the case where x and y are the parameters, but could also work for yz, or xz as parameters).

Surface integral of the scalar function: Surface integral of the vector function:
? * r
”F «dS Ij FendS wheren= =
7 7 xT

J;_[f(x,y,z) ds =_[3|.f(?(

=0r -

HF-dS :'[:[F-(?‘; xE)dA

simplifies to l
if r(x,y) = (x,y,g(x,y)) if r(x,y)= (x, y,g(x,y))
then and I = (P, Q,R)

By

j;ff(x,y,Z)dS=I5[f(x,y,g(x,y))J{%T{%THM then ij - dS = ﬁ{ p% Qag+R]d4




Example (rework using the simpler formula)
#7) Evaluate the surface integral _[yz ds
S

where S is the part of the plane x+ y+2z =1 that lies in the first octant.

F4
We would have the same parametrization...

—

r(x,y,z) = <x,y,1—x—y>

...but because we just used x,y for the parameters, we can use this
formula for the surface integral:

x ‘L]'f(x,y,Z) ds =j!f(x,y,g(x,y)) \/(%)2 +[%T +1.dA

0z 0z
y=1-x =" -t

z " gf(x,y,z)dgzgy(l—x—y) \f(—l)2 +(—l)2 +1dA

11-x

(a little simpler because the derivatives = \EI j' (y—xy—yz)aj; dx
aren't vectors and no cross product) 2 0

1, 1., 1.,]"
=.\/§ LT . 3] i
J;_zy 37 3 |

1

= B[ 302 ~x(1-2 -2 )

0

1/
=J§I —1x3+lx2—~lx+ljdx
W6 27 276

b |24

1
3Ll 1,1, |3
24 6 4 6




Example

#19) Evaluate the surface integral for the given vector field and the oriented surface
F(x,y,z)=(xy,yz,zx) Sis the part of the paraboloid z=4-x"—)" that lies above

the square 0<x <1, 0< y<1 and has upward orientation. A

z

-~

1
We would have the same parametrization... ‘I
F(x,9:2) = (1.3.4 -5 =57 "
0 1
...but because we just used x, y for the parameters, we can use this

formula for the surface integral:

g Hﬁ . dS = ﬂ[ Pa—g— —-+RJdA

P=xy, Q=yz, R=z=x g(x,y)=4-x"-)

%2 __,, _3£=_2y
Ox T Oy
[F-dsz]{— % _ a—g+RJdA
2 D dy

(-G (22)-(r2)(-29)+ 2x) at

s
1

0
1

._'r—l Ql.—...-

( (Jx:y)(~2;\:)~(y(4~x2 —yz))(~2y)+(4—x2 uyz)x) dy dx
(

2x’y+8y* —2x*y* +2y* +4x—x3—xy2)dyd::

00

‘ 8 1,7
|:xy +—y ——x2y’+ y5+4xy xsy——xya] dx
J 37 3 377 |,

1

% +§—Ex2+2+4x f—lx dx
177373 s 3

1, 8 2, 2 1, 1, |73
37 37 97 5

—X 4=x—=X +—x+2x" ——x'—-=x
4 o |180




Example (setup only, check answers with key and technology)
#6) Evaluate the surface integral ﬂxy dS S is the triangular region with vertices
§ (1,0,0), (0,2,0), and (0,0,2)

Online tech for integrals (Ti-92 emulator)

'F3' to access calc menu
'2' to integrate

https://tiplanet.org/emu68k_fork/ .

L]

'F3" and '2' again for 2nd integral

e enter nside integral using this form:

integrand, (letter of variable),(lower
limit),(upper limit) then close parenthesis.

e then enter a comma, and repeat for outer
L9 integral.
Example: I j J6xy dy dx
0 0

Here is the calculator text string:
J O CTCB D) ¥xcx 0.2-2x) . x.0.1)

the inner integral Ti-89 is the same except you
have to select 'home' first



Example (setup only, check answers with key and technology)
#9) Evaluate the surface integral Hyz dS S is the surface with parametric equations:
§ x=u’, y=usinv, z=ucosv

0<uc<l, Osvsg



Example (setup only, check answers with key and technology)
#26) Evaluate the surface integral Hi*: - dS for the given vector field F and the oriented
S

surface S. In other words, find the flux of F across S. F(x,y,z) = (xy, 4x?, yZ>
Sisthe surface z=xe” 0<x<1, 0<y<1 with upward orientation.



16.8: Stokes' Theorem

Stokes' Theorem extends Green's Theorem for higher dimensions

Green's Theorem stated that the vector line integral in 2D is the sum of the individual microscopic
circulations: y

0 oP
§pacrow-[f[ 22 )u

In general, to evaluate a line integral along a path, we had to use the more general...

[F(x7)d
C

% : . :
;?( ) 7 dt ...and evaluate along the path (sometimes, multiple sections

of path)

nl—.r.r

But if we had a closed-path, then we could use Green's Theorem that allows us to integrate the
expression for circulation over the area in the domain representing the bounded region. Even
though this was a double-integral, it was often easier than computing the line integral along the path.

We then defined curl of a field... ...and noted that curl represent the circulation concept
extended to higher dimensions.
Curl
(curl - cross product) The curl of a vector field at a point is a measure
S F T e of the tendency for a vector field to rotate:
ik The curl vector length indicates the
magnitude of the tendency to rotate,
= o 06 9o i as well as the direction.
ox o @& /' <3=¥ The curl vector is perpendicular to
P O R «r  the plane of rotation at this point,
oR P B8R B P and mc_ilcates dlrgctlon of rotation
——@ “__i 90 _oF according to the right-hand-rule.
&y &z 8z ox éx oy -

(output is a vector at each point,
a vector field)

If we put these two ideas together and use curl to represent circulation in something like Green's
Theorem we get Stokes' Theorem:

[F e dr = [[curl F <7 dS = [[ curl FedS
C S S

Since JF-dr:IF-Tds
C (&
Stokes' Theorem says that the line integral around the boundary curve of S of the tangential

component of F is equal to the surface integral of the normal component of the curl of F.

As with Green's Theorem, even though this requires evaluating a double-integral, this is often
easier than directly evaluating the single integral along the path.



An example
Here is a first example for us to try: Evaluate _[F . d;-: where F = <—y2 < X zz>

and C is the curve of intersection of the plane“y + z = 2 and the cylinder x* +y* =1

with C oriented counter-clockwise when viewed from above.



What would be required to work the example directly
(This is much harder, don't use this method - but to see what this is equivalent to...)
First, we'd have to parametrize the curve with a single parameter, . Start by finding an equation representing
the curve in 3D by finding the intersection of the ellipse and cylinder:

y+z=2 x’ +y2 =1

y=2—2z substitute into x* + (2 - 2)2 =1
Since the 2nd term is squared, we could reverse what it inside, to get the equation of the elliptical curve in 3D:

2 +(2-2) =1 = P +(z-2)" =1

This is the expression of a circle not centered at the origin. We can use parametrization for a circle, but to
handle the offset center, let's define a new variable w, then complete the parametrization:

w=z-2

circle: x° +(w)2 =1

x =rcos@=(1)cosd =cost
w=rsin@=(1)sind =siné

To return from w to z, we can substitute, then solve for x, y, and z to get the final parametrization of the curve:
x=cosé
w=z-2=sind
z=2+sind
y=2-z=2-(2+sin@)=—sind

r(0)=(cosf,—sind,2+sind) 0<0<2x (our tis 6 )

Now we would compute the line integral directly using IF d i o7 dt
r(8)= {cosé’, —sin®, 2+sin )
r= (—sin@, —cos 0, cos )
F(r)=(~(-sin6)", (c0s6), (2+sin0)")
= (-sin’ 8, cos 0, 4+ 2sin 6 + sin” 0)
Fer'= (—sir:fl 0,cos8, 4+ 2sin +sin® 6') « (—sin8, —cosd, cos )

—sin® @ —cos” @+ 4cos &+ 2sin O cos @ +sin’ cos &
2x

IF odr :I (sin3 @ —cos’ @ +4cos @+ 2sin @ cos O + sin® Bcos(?) de
C

0
2= 2x 2= 2x 2x
. Isinsada— Im520d6+l4msﬂd0+IZsinGcosBdﬂJr Isin’ﬂcost?dﬂ
0 0 0 0

2x

2= 0 0
-_[l(2+si1116')c059] [lmlsinza] +4[sin0]" +2fu du+ [ du
3 0 2 4 0 0 0

=0-7+0+0+0=—7x



Computing a line integral using a surface

Both Green's Theorem and Stokes' Theorem allow us to compute a line integral around a closed path by
instead integrating 'circulation’ over a surface:

Green's Theorem

Stokes' Theorem

z

@de+Qdy=H[%—z:)¢4 J-I-‘:-d?:”cur[ﬁ-ﬁdS:”cuﬂF-dS"
[ D Pol s i

Green's Theorem stays in the x-y plane

Stokes' Theorem allows the path and
surface to be 3-dimensional

...but both allow us to compute a 'path integral’ using a surface.
Computing a surface integral of curl using a line integral or normal vector

Stokes' Theorem can also be used in reverse...to compute the surface integral of curl F by instead
computing a line integral.

|J-I-f.- d;.}‘”curl F-HdS:”curl I-"'-d.g"
| s s

easiest
When we do this, remember that:

;[55- d?=£75(?(t))- F(¢)dt

In some cases, the line integral would be more difficult, but for the surface we can easily compute a
normal vector, n. Then we would use this form to compute:

J.}-".-d;; J-cyrll-;-;;d =chrll7-d§
c 5

S

easiest
Line integral value is independent of which surface is used

Since there is a single correct value for the line integral (path integral), that means that integrating over

any surface which has this path as the boundary will yield the same result - independent of which surface
is chosen:

g - - - Evaluating over any of these surfaces is a valid way
J'F o dr= _Ucurl FendS§ =chrl I'-dS | tofind the line integral value because they all share
c s s the same curve, C.

Sometimes, we can take advantage of this to pick a particular surface which will be easiest to

express or integrate. For example, if the curve happens to be in a plane, we can just pick the
region enclosed in that plane to integrate over.



Example
#15) Verify that Stokes' Theorem is true for F' = <y,z,x>

if Sis the hemisphere x* + 3y +2z°> =1, >0
oriented in the direction of the positive y-axis.

e Calculate the line integral directly over the boundary curve.



Example
#15) Verify that Stokes' Theorem is true for F = <y, z,x>

if S is the hemisphere x* +y* +2z° =1, >0
oriented in the direction of the positive y-axis.

e Calculate the surface integral of curl over the surface as defined.



Example

#15) Verify that Stokes' Theorem is true for I = {y,z,x)
if Sis the hemisphere x* +y* +z> =1, y>0
oriented in the direction of the positive y-axis.

Then | want us to also do the surface integral over another, easier, surface to see that it
matches.



16.9: The Divergence Theorem
Let's review vector calculus...

In 16.1, we defined vector fields - the idea that at any point in the domain we could define a vector

with magnitude and direction. Easiest to image as a flow of fluid and the vector being a force
imparted by the fluid at the point in a particular direction.

In 16.2, we defined line (path) inteqgrals - that you could move along a path and the line integral

would sum up the contributions of the little 'forces’ from the vector field along the direction of the
path.

Line integral along curve C

z=f(x)




In 16.3, we learned that the value you get from a line integral generally depends upon the path taken,
but for special fields, called conservative vector fields, the path is independent and depends only upon
the starting and ending points.

N

0,2) For F = (P,Q), the vector field is conservative if
AR op_aQ

Z »y &
(-5,-3) For conservative vector fields, there exists a scalar
function f (x, y) called the potential function such that:

Vi ={f.1,)=F

Then, by the Fundamental Theorem of Line Integrals:

IF: dr = f (endpoint)— f (startpoint )
c

In 16.4, we defined circulation as the tendency of a vector field to cause rotation.

¥

Higy

e
-
F= (—V" _A} ?: (2, 2> ?: (-)’,I)
IF * ¥ =negative F .?: 0 l F =¥ =positive
[ T e
...the ball would:
rotate clockwise not rotate rotate counter-clockwise
"negative circulation” "zero circulation" "positive circulation”

...and said that the a line integral around a closed
path is like a 'macrocirulation’' which is equal to
the sum of all the 'microcirculations' enclosed by
the path, which produced Green's Theorem

oQ oP
qu dx+Qdy= .[J.[E ‘aj dA | This gives us a choice: evaluate a line integral
© & (often over multiple segments) or integrate the
circulation over the 2D area enclosed (often easier).




In 16.5, we defined divergence and curl:

Divergence
(divergence - dot product)
divF=V+F
o of of
(L2 az>'<"”Q’R>
oP aQ
& az

(output is a scalar at each point,
a scalar field)

~
=) G

This point hd‘: negative divergence

net flow out Is negative because field

\ appears fo be disappearing here

' ~The Neld 15 acting as a 'sink’

This point has positive divergence
net flow out is positive because field
appears to be generated here
- the field is acting as a 'source!'

Curl
(curl - cross product)

—
curl F=V x F

i j ok
d o0 &
o oy oz
P QO R

<aR 80 8P R 80 aP>

(output is a vector at each point,
a vector field)

7%
/ aA"_.'
1\\ ’ curl

The curl vector length indicates the magnitude of
the tendency to rotate, as well as the direction.

The curl vector is perpendicular to the plane of
rotation at this point, and indicates direction of
rotation according to the right-hand-rule.

In 16.6, we defined parametric surfaces, the idea that just as we can parametrize curves using a
parameter t to traverse the curve, we can use two parameters u,v to traverse a 2D surface.

In 16.7, we defined surface integrals, which use integrals to sum something up over the entire 2D
surface (usually existing in a 3D space). We did this for both scalar functions and vector functions:

Surface integral of the scalar function:

Surface integral of the vector function:

integral sums up the value of the
function over this domain

integral sums up the value of the

In the vector field
case, this is called

function over this domain

a flux integral
which represents

the sum of the
'flow' of the amount
of the field which is
normal to the
surface, through
the surface,
summed over the

Hf(x,y,z) dS=’[3[f(-r.(u,v))F-' xr|ddA

HF' o dS = IIF ndS wheren—l_: _:l

-0r -

J;[F-a’S :[Jf.(z x7,)dA

= entire surface.




In 16.8, we saw that Stokes' Theorem generalizes Green's Theorem to higher dimensions:

Green's Theorem Stokes' Theorem

z

jf-':- dr = chrl f-f:-;dS=chrl f-':-dg
C Ay 5

Green's Theorem stays in the x-y plane Stokes' Theorem allows the path and
surface to be 3-dimensional
But these both give us a choice:

1) evaluate a line integral (often over multiple segments)

2) evaluate a 2D surface integral of the circulation (defined by the curl of F)
over the 2D area enclosed

...whichever is easier.
16.9 - The Divergence Theorem

For our last CalclIII topic, we define the Divergence Theorem (aka Gauss' Theorem) which

“F'-dE’:jﬂdzvﬁ’dV
E

S

The sum of fluxes (outward The divergence of the
defined as positive) across all  equals  vector field summed over
surfaces of a closed surface the enclosed volume




For our last CalcIII topic, we define the Divergence Theorem (aka Gauss' Theorem) which

HF’-dE’:jﬂdzvﬁdV
)

S

Similar to Green's and Stokes' Theorems, the
Divergence Theorem gives us a choice...

1) evaluate surface integrals for all the surfaces of a closed surface
2) evaluate a 3D volume integral of the divergence of F

...whichever is easier.

Geometric interpretation of the Divergence Theorem

The divergence of a vector field at a point is a measure of the field's net 'source’ or 'sink’ flow at that
point:

Imagine is the volume was a tank which
This point has positive divergence could hold a liquid, but which allowed some
\\ / net flow out is Ft:os;tive becalt.isj :eld liquid to escape through the porous sides
appears 10 be generale ere
""‘. ” /- the t?;d is acting gs a 'source’ of the tank.
X B If there were hoses that allowed fluid to
// \ \ enter the tank (sources) then the total
amount of fluid expanding in the tank from
® the sources (the divergence) summed over
the volume must equal the total amount of
e % _ liquid that leaves the tank through the
[|Feas=|[[divF av surfaces.
S E
The sum of fluxes (outward The divergence of the
defined as pOSitive) across all Equals vector field summed over
surfaces of a closed surface the enclosed volume

...means the sum of all outward 'source' flows from the points
inside the volume, equals the total outward flow of field
across the surfaces leaving the volume.




Ex #1. Verify that the Divergence Theorem is true for 1_;*) i <3x xy 2xz> - - N
if E is the cube bounded by the planes x=0, x=1, y=0, y=1, z=0, and z=1. _”F «dS = _U_[ divF dV
S E

The difficult side ”F- d§

yan

requires computing surface integrals for 6 sides: 69 9
always 'outward' : /
— — \ -

side 10 [[F+d § = [[(3x,x7,2xz) + (0,0,1) dd side 2: H -dS =j (3x,xy,2xz) + (0,0,~1) dA
=jj'2xzdydx=jj2x(1)@dx =H—2xzaydx:ﬂ—2x(o)ayc&
= [2x{y], de=f 2x s =H(O)a&c&4ﬂ
=141

side 3: ﬂ} B = ”(3Ixygxz> (1,0,0) d4 side 4 I FedS= H(3xxnyz) (~1,0,0) d4
=“’3xaydz=“'3(1)aydz =J;J;—3xdydz {J; -3(0) dy dz
=i[3y];dz=j3dz =ﬂ0aydz=|ﬂ
]

side 5: H? A5 = [ (3x.x9.2x2) + (0,1,0) side 6: jj'?d§ [] (3x,29,2xz) + (0,-1,0) d4

Total outward flow=1+0+3+0+1/2+ 0 ¥ 9/2




Ex #1. Verify that the Divergence Theorem is true for [ = <3x, Xy, 2xz> = .
if E is the cube bounded by the planes x=0, x=1, y=0, y=1, z=0, and z=1. _”F «dS = _U_[ divF dV
s 5

The easier side H divF dv /
requires computing one triple integral: / ”
[ # av = [[[{ 222 ) (5.2
divF dV = ——,— 3xxy2xz dx dy dz
000 ox’ ay 0z

j}l[ [3x]+—[xy]+—[2xz]] dx dy dz
i(3+x+2x) dxdydz= j-jlj.(3+3x) dx dy dz

000




Ex #2. Verify that the Divergence Theorem is true for F = <x2, xy, z>

E is the solid bounded by the paraboloid z = 4 — x* —y2 and the xy-plane



A really interesting table in our textbook: Green's, Stokes', Divergence Theorem are higher dimensional
versions of the Fundamental Theorem of Calculus. In each case we have an integral of a "derivative" over a
region on the left side and the right side involves values of the original function on the boundary of the region:

Fundamental Theorem of Calculus

Fundamental Theorem for Line Integrals

Green's Theorem

Stokes’ Theorem

Divergence Theorem

l-bF'(.ﬂ dx = F(b) = F(a) . -

|, Vf+ dr = fx®) - f(r(a) —

H (ﬁ - ﬁ) dA= | _Pdx+ Qdy
D :

dx day

| corl F-ds = F-dr
we o

5

[ divFav = ([ F-ds
¥

Homework notes: Start with #5, and do problems 1 and 3 last (they are the most work, but

they are important for the test).




