Calc3 — Lesson Notes - Chapter 15: Multiple Integrals

15.1: Double Integrals Over Rectangles
15.2: lterated Integrals

Single-variable integral = area under curve, Riemann Sum

In single-variable calculus, we learned that integrals are objects which 'sum’
things, and the first thing we considered was summing rectangles to find the area
under a function curve: ¥
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When summing rectangles, this is called a -
Riemann Sum and gives the approximate area: A= lef(xf *)A"
Taking the limit for a large number of rectangles, o R
gives a smoothed version close enough to the A= },l_l,ng(x,- *)Ax
curve to call the actual area: N : :
N\, H
Then we called this smoothed sum the definite A =" f(x) e
integral from a to b:

Double Integrals Over Rectangles in the Domain

In multivariable calculus, the domain has more than one variable. First, we'll consider just a 2D
domain. Now instead of rectangles of width Ax in the domain we have rectangular prisms with
area AxAy in the domain:

Summing these rectangular prisms is called a double Riemann - , Z Zf( . )
Sum and gives approximate volume under the surface : = “a YEW

Taking the limit for a large number of prisms, gives a
smoothed version close enough to the curve to call the = lggz Zf( ,Jf,, )
actual volume: i

Then we called this smoothed sum the definite V= dA
double integral over region R in the domain: - ij(x,y)
R




Double Riemann Sums - Midpoint Rule

When we computed Riemann Sums by hand in previous calculus classes, we had various ways to
compute the rectangle areas: midpoint rule, trapezoidal rule, Simpson's rule) and these all have
counterpoints for double-integrals. We'll just focus on Midpoint Rule, which says we choose the
center of each rectangle (Xcenter, Vconter) and use this to find f(x,y) for the height of the prism:

Ex) Use the Midpoint Rule to approximate the value of the integral

[[(16—x* —2y*) d4 where R ={(x,y)|0<x<2,0<y<2}
R
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Average Value

We've seen average value before, and it works similarly for multivariable functions and is always a
sum of something divided by the quantity of that thing:

discrete numbers

single variable functions

multivariable functions

3+4+5+8 1 1
AV =—— AV = —— x)dx AV =—— ,y) dA
1 b—a'!f( ) A(R)J;[f(xy)
=5
Computing actual volume by computing the definite double integral
We can get a better approximation of the volume under a surface by finding a double Riemann
Sum with more rectangles...
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...but in single variable calculus we learned to evaluate the definite integral using the
Fundamental Theorem of Calculus:

jf(x) dx=F (b)—F (a)
where }?' (x) is the antiderivative of f (x)

So we need something like this for double integrals...



Computing the definite double integral using Fubini's Theorem

Fubini's Theorem says that you can compute integrals iteratively, that is, you can compute the
inner integral first, and then use the result as the integrand to compute the outer integral:

[ffi.s'continuousom‘herectangleR:{(x,y)|aixﬁb,cSysd},then

_gf(x,y)dA—ﬁf(x,y)dy@bc:ﬁf(x,y)dtaj}

...and we can choose which variable to make the inner and which the outer variable of
integration (whichever is more convenient).

This is easiest to understand by doing some examples...
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2nd, integrating along x

Special case: f(x,y) can be factored into separate x and y factors

The last example is also a special case: where we are able to factor the f(x,y) into separate factors
each containing only one of the variables. In cases like these:

If f(xy)=g(x)h(y)
_gf(x,J’)dA:_”g(x)h(y)dxaﬁ?ZIg(x)deh(y)dy

EX) jixzy dy dx
01



Another example...
13
Ijex+3y dXCf_V
00

can be made special case if you don't see the special case, it is more difficult
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More examples...

1
II cbz dx  (can't be factored for the special case)
01

inner: when working with y, x is treated as a constant...

_2[(4353 —9x*y* ) dy

1
[4x'y-3x%y"

(4x' (2)-3x(2)") (4% (1)-32 (1))

8x’ —24x* —4x® +3x

4x* —21x* the result is typically a function of (contains) the outer variable

outer; now integrate with respect to x...

_i'(4J|c3 —21x2) dx

0

[x-7°],
()" =70)")~((0)" ~7(0)') =
Try these...
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More examples...
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More examples...

Hxsiﬂ(x+y)dd Rz{(x,y)lﬂﬁxﬁ%,ﬂﬁysg}
R

% %%
I Ixsin(x-l—y)dxaﬁ)

%
inner - Ixsin(x+y)dx

dv=sin(x+ y)dx
=1 f1dv=[sin(x+y)dx
=dx v=—cos(x+y)

/] %
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15.3: Double Integrals Over General Regions in the domain
When region in domain is not a rectangle

When the area in the domain is a rectangle, we integrate either varlable first, and
the limits of integration are constants:

IRIf(x,y)dA=[[f(x,y)dya5r=:fif(x,y)dxdy

X
a b

If the region is not rectangular, the edges are expressed as functions of one of the

variables in terms of the other:
y

 x=g(»)
(
Hf x,y)dA= :‘fhf (x,y)dx dy ‘ x=h(y)
c g(») ¢
y

) F

I /(o) at= [ ] 7

a g(x)

(Rectangular area is just a special case) a b

An example
Ex) J'(x2+y2)dA 1|-~.rhereD={(J\c,y)|0£x£2,x2 SyS2x}
R

Determine intersections and graph first:




An example
Ex) ﬂ(x2+y2)dA whereD:{(x,y)|O£x£2,x2 SySZx}

We can choose either variable to integrate over first...
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Sometimes one direction is a far better choice
If you have a region like this... y
X
Integrating over y first... Integrating over x first...

...means you only need one integral: ...means you need two integrals:

b h(x) b h(») c ()

Iff(xy)dA Hf(xy dy dx ﬂf x,y)dd=[ [ f(xy)acdy+| | f(x.y)dxdy

a g(x) ag(y) b g,(y)



You can use a volume structure to calculate the area in the domain

If you make the integrand = 1...
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Examples...
Ex) I xSJirl dA whereR={(x,y)|0$x§1,0£y$x2}




Examples...
Ex) chosydA where R is bounded by y =0, y =x", x =1
R

11-x

Ex) sketch the solid whose volume is given by the iterated integral: j I (l—x—y) dy dx
0 0



15.4: Double Integrals in Polar Coordinates
Polar coordinates is superior when the domain region is circular

This problem ”3)/’ dA -V ...Is fairly difficult using our current methods:
/m/xz +y' =4 3
/? > X 1
X 4y* =1
—I\M x* \14 x* 2 \-'4 x*

HBydA j j 3ydydx+j 1.13ydydx+f [ 3ydyax

-1 E 2]@4--.: & 1|:2 2:|\-'r4--1'2 % 2|:z 2]\;'4--.:2 5
:l;|:2y 0 +:[ 2y N +J: 2y 0
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I§(4—x )dx+:|ll5(4—x —1+x }dx+!5(4—x )dr

I[G——x Jdnjlzdx +j(6—%x2]dx
=[6x_%xs]2 +[§xL +[6x_%xs]l

=—6+l+12—4+2+2+l2—4—6+l
2 2 2 2

=14

Definition of Polar Coordinates

But there is a way we can take advantage of the circular nature of the region by defining a new
coordinate system, called polar coordinates.

Instead of defining position in the domain as distances in the x and y direction, we define
position using distance from the origin in a direction:

) Converting...

rectangular to polar polar to rectanqular

F=aX 4y x=rcosf

g:tan—l[lj y=rsiné




What is dA in polar?

In order to integrate, we also need to know what area dA in the domain is equivalent to in polar

coordinates.

0 = angle in radians = M

-
therefore arclength = rd@

When dr and d6 are infinitesimally small, this
area is approximately rectangular, so the area
is length * width:

dA = (dr)(rd&)

dA = rdrd@

"argh - dee argh - dee theta"

Polar coordinates is superior when the domain region is circular

Let's try this problem again in polar coordinates... H3y daA ¥
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The inner integral limits of integration may be functions

Just as in the rectangular case, for more complicated regions, the inner integral may have
limits of integration which are functions:

6,
i’; i

?g2

Hf(x J’)dA _[ I f(rcosﬂ,rsinﬁ)rdrdﬁ

o 31(9)

h(r)
Hf (x,y)dA= J- I (rcos@,rsin@) r do dr
ni h(r)

Examples
p %40059

Ex) Sketch the region and evaluate I I rdrdf
0 0



Examples
Ex) Sketch the region and evaluate H 4—x*—y* dA where R = {(x,y) | x*+y* <4, x> 0}
R

Ex #14) Sketch the region (and evaluate - for homework)

Hx dA where D is the region in the 1st quadrant
b that lies between the circles x> + y* =4 and x* +y” =2x



Examples

Ex #15) Use a double integral to find the area of one loop of the rose ) » = cos36
(setup - do the evaluation for homework)

Ex #25) Volume above cone z=+/x’+3»” and below sphere x*+ y* +z*> =1
(setup - do the evaluation for homework)



15.5: Applications of Double Integrals

Mass and Density y

(high dense region)
Define density as how much mass exists
in an object over a small area:

p(x,y):%

Aarea

‘ _ (low dense region)
...and this mass can vary over the object

(is a function of x and y.

We can use a double-integral to sum the contributions over the entire object to obtain
the total mass:

m= Hp(x,y) dA

D

1st Moment (center of mass)

A moment is defined as the product of a distance and some other quantity. There are many
moments which have useful applications.

The 1st moments of density (just called moment) is defined as the density times
distance from one of the axes:

M, = ffyp(x,y) dA

M, = pr(x,y) dA

If we divide the moments by the mass, we obtain the position of the averages in the x
and y directions, which is the location of the center of mass. This is the point where the

object would balance...in the x (and y directions) have of the mass is on each side of
this point.

(;,;) = i _[pr(x,y) M,gyp(x,y)M

center of mass




2nd Moment (moment of inertia)

The 2nd moments of density are defined as the density times distance squared from
one of the axes and are called moments of inertia:

1= [[yp(x.y)d4

I, =fo2p(x,y)d4

Mass is the aspect of an object which resists linear force - more mass means less
movement (acceleration) for a given force: F' = ma

Moment of inertia about an axis is like 'rotational mass', it is the aspect of an object

which resists rotational motion which would be produced by a torque (alpha is angular
acceleration): 7 =1«

A flywheel has most of its mass
around the outer edge which
produces high moments of inertia.
Such an object takes a lot of torque
to start it spinning, but once spinning,
resists friction well and keeps
spinning for a long time.

m=my l=1l

m=my =3k

m=my I=5l

Applications in Probability - Probability Density Functions

A random variable provides a numerical value of possible outcomes of a random process. For example,
you could define a random variable for the weight of an individual person, W. This variable could take on
values from 0 to some maximum weight, and if you selected a person at random, you would get a different
value for W each time.

A probability density function (PDF) provides a measure of the likelihcod of particular

weights occurring in a population. p(W)
0 W 800
weight (Ibs )

Summing all the probabilities (equivalent to 'mass' for matter density) would give the total probability which is
always 1, but if you sum probabilities over a subregion of weights, you get the probability of a person
randomly selected have a weight in this region:

p(W)

P(90<w <150)= [ p(W)dw

0 90 150 W 800

weight (Ibs)

® m=my 1=2I

m=my I=41

m=my l=61,



Applications in Probability - Probability Density Functions

In general, the probability of an event might depend upon more than one variable, for example, likelihood of
heart disease may depend upon age and also body mass index (bmi). We could define a general
probability density function f(x,y) where x is age and y is bmi:

Summing all the probabilities (equivalent to 'mass' for
probability of heart disease matter density) would give the total probability which is
z always 1:

Hf(x,y)dA=1

P Summing probabilities over a subregion of the
explanatory variables, you get the probability of a
person with this range of ages and bmis having heart
disease:

P(anSb,cgysd):jff(x,y)aj;dx

1st moment of a PDF: Expected Value (mean)

The moments for a probability density function (PDF) have specific meaning and uses. The 1st moments
of a PDF gives the Expected Values (or means):

EV:y:pr(x)dx

The expected value (or mean of the random variable probability distribution) represents the
probability-weighted 'average' value.

If the function is multivariable, then:
EV. =pu_ = _Ux p(x,y)dA
D

EV,=p,=|[y p(x,y)dd
D



2nd moment of a PDF: Variance

The 2nd moment of a PDF gives its Variance:

Var(x) =g = onz p(x) dx

o x

low variance high variance

The variance is the standard-deviation squared...both are measures of our widely dispersed
the probability is about the mean.

3rd moment of a PDF: Skewness

The 3rd moment of a PDF gives its Skewness:

w0

3
skewness = I X p(x) dx
—00
p(x) p(x) ;J(Ii/\ plx) plx)
X X X X \’K
high negative skewness low negative skewness zero skewness low positive skewness high positive skewness

Skewness is a measure of deviation from symmetry and can be positive or negative.
4th moment of a PDF: Kurtosis

The 4th moment of a PDF gives its Kurtosis:

kurtosis = I x' p(x)dx

p ( x) lower kurtosis

higher kurtosis
X

Kurtosis gives a measure of 'tailedness’ - how much probability is in the tails instead of the central
grouping. Higher kurtosis means there is a higher likelihood of the outlying values occurring.



Examples (setup only...redo and compute values for hw)

#5) Find the mass and center of mass for p(x,y) =x+y
for the lamina occupying the triangular region with vertices of (0,0), (2,1), and (0,3)

#11) A lamina occupies the part of the disk x° + y* <1 in the first quadrant.
Find its center of mass if the density at any point is proportional to its distance from the x-axis.



Examples (setup only...redo and compute values for hw)

#12) A lamina occupies the part of the disk x” + y* <1 in the first quadrant.

Find its center of mass if the density at any point is proportional to the square of its distance
from the origin.

#16) A lamina occupies the region inside the circle 2 +y2 =2y but outside the

circle x* +y* =1

Find its center of mass if the density at any point is inversely proportional to its distance from
the origin.



15.6: Triple Integrals

What is a Triple Integral?

Single integral

y=7(x)

-

5

Domain is a 1D region in x

outputis y = f(x)

Single integral is a
summation of output values
over the 1D domain line
values from a to b:

[/(s)as

Double integral
z=f(x,»)

r 3

X

Domain is a 2D region in X,y

Qutputis z :f(x,y)

Double integral is a summation of
output values over the 2D domain

[[ 7 (x.y)da

dA=dxdy, dydx
=rdrdf

Applications of Triple Integrals

» Physics: Density, center of mass, moments of physical 3D objects

Triple integral

air pressure P = f(x,y,z)

Domain is a 3D region in X,y,2

Outputis P= f(x,y,2)

Triple integral is a summation of
output values over the 3D domain
volume:

I!If(x,y,z) dav

dV =dxdy dz, dxdzdy
=dy dxdz, dydzdx
=dz dx dy, dz dy dx

= others (next sections)

» Probability (expected value, variance, skewness, kurtosis of probability distributions with 3

explanatory variables)

* Flux integrals (subject of our last chapter in Vector Calculus)

In this section, we are going to focus on how to evaluate (can be tricky)...
Fubini's Theorem for Triple Integrals (domain is a box)

Just an with double integrals, if the domain region has no dependencies between the
variables (the limits of integration are all constants), then you can evaluate the integral

iteratively in any order:

I_!:[f(x,y,z) av

f(x,y,z)dcdy dz

B Cm— o 0 C—
0 e, B, 6 C— T,
R - - e

f(x,y,z)dzdydx

(6 possible orderings)




If there are dependencies, you may have to integrate in a particular order

The textbook discusses different 'types'/'cases' that dictate the order you need to integrate, but the main idea

here is that If an edge of the domain region is not constant, you must write it as a function of a variable 'outside’
this variable: :

2= ik, ¥)

= gaix)

d hly) b ga2(x)uy(x.¥)

Hf(xJ’)dA Hf x,y) dx dy mf x,y,z) dV = H [ f(xy2)dedydr

a g (=) m(x.y)

"—'8)’

z=uzlx 3

wi z= 1%, ¥)
A
|

1
| x=hiy)

x A

i = hs(¥)
d () u(x,y)

IHf(xy,z)dV [ | rxrz)&dcdy

e B(y) w(x.y)

_[Jf(x,y) dA =

Order of integration (examples)

Zz
g 0.0.1
The best wav to understand this is just to work a lot of examples... e
Evaluate J:U dV where E is the solid tetrahedron bounded (0‘1;3}
byx=0,y=0,z=0and x+y+z=1 (1.0,0)
(evaluate all 6 ways) X
1) project onto x-y plane (this will be the outside two integrals, do y first): (domain)

The outer integrals:

=L ] | —x+1

I!D@ﬂ

X 0

The inner integral:

Imagine a person standing on the projection and jumping...they will hit their
head on a ceiling which determines height (z in this case).

i

Now evaluate:

-y

] (z)dzajzdx

x+11

(17

2

(2) dz dy dx

D ey,
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2) project onto x-y plane (this will be the outside two integrals, do x first):

1

y



3) project onto y-z plane (this will be the outside two integrals, do z first):

The outer integrals:

z=-y+1 {=pil

[{0es

The inner integral:

z Imagine a person standing on the projection and jumping...they will hit their head
(0,0.1) on a ceiling which determines height (y in this case).
(0,1,0) 1 -y+ll-y-z
Sl Teses
(1.0.0) \x+y+z=1 0 0 0
X x=l—-y—=z

(will also evaluate to 1/24)

Setup the last 3 orderings...

4) project onto y-z plane (this will be the outside two integrals, do y first):

5) project onto x-z plane (this will be the outside two integrals, do z first):
6) project onto x-z plane (this will be the outside two integrals, do x first):



More examples...

#15) Evaluate ﬂ x* dV where T is the solid tetrahedron with vertices (0,0,0), (1,0,0),
T (0,1,0), and (0,0,1).



More examples...

#21) Find volume of the solid enclosed by the cylinder x* + y* =9
and the planes y+z=5 and z =1



1 1-x% 1—x

More examples...
#34) The figure shows the region of integration for the integral I I I f(x,y,z) dy dz dx
0 0 0
other orders.

Rewrite this integral as an equivalent iterated integral in the five

Original ordering is x-z projection:
For this projection, other direction:

g
1 gz 1-x
\= I If(x,y,Z)aﬁfcbcdz

cl——..—-

—

Can project on x-y:

f y=1-x
rorx=1—-y

> X
0 1
(from equation of top surface)
/ Other direction:
/
1 1-x1-x* 11-y1-2?
[[ [ rGayz)dzdvac| |[] [ f(xr.z)dzdray
00 0

a0 0



1-x2 1-x
| j f(x,,2) dy dz dx
0
Rewrite this integral as an equivalent iterated integral in the five other orders
y=0toy=1-x Project on y-z:

1

#34) The figure shows the region of integration for the integral I
0

e

=2p—y°
z=0toz=1-x> £ z=iy-¥

r'y I 2=

y=1-x and z=1-x /

are the surfaces on the side
and top of the region.

y=1l—x

If you find the intersection of these: y d orx=1-y
x=1-y 11 iz 12y 1y
z=1-(1-yy _[ J _[ f(x,y,z)dxdzderI I If(x,y,z)dxdzajz
02y-y* 0 o 0 o
z=1-(1~2y+y2)
z=2y-y"

This splits the region into two
subregions so we need to add
two integrals, each with a
different 'ceiling' establishing the
X value.

For the final direction, we need to reverse the variables at the boundary:

z z=2y-)° 5
z=2y-y £ lory=1-+l-z z=1-x

7 H erzx,r‘l—z.\

Y -2y=-z :

y=2y+l=—z+1

(y-1)° =1~z -
y-l=1J1-2z y X orx=1—y
y=1-+l-z

...and here are the two integrals:

1 1

[T T remaaae] | [ren)use

0 01-V1—z 0




15.7: Cylindrical Coordinates
Defining Cylindrical Coordinates

Double integral

Hf(x,y) dA

p Converting...

rectanqular to polar

f=tan"' (E]
x

polar to rectanqular

x=rcost

y=rsinf

dA=dx dy, dydx rectangular

=rdrdd polar

Triple integral

JJJf(x,y,z) dav

Like polar in x-y plane, plus z
Converting...

T rectangular to cylindrical
\—_

4

$ O=tan'| 2
__._____..I_Z Yy X
P I Bl
~ Z2=Z
0 cylindrical to rectanqular
S . x=rcost
N— y=rsiné
zZ=2z

dv =dx dy dz, dx dz dy

=dydxdz, dydzdx rectangular
=dz dx dy, dz dy dx

=rdzdrdf cylindrical

Cylindrical coordinates are best for...

« Cylindrical domain regions (define z so it is pointing in whichever direction is the cylinder's axis)

e Cones

s Circular paraboloids

Anything where the domain region has circular cross-sections, even if the radius

of the circle is changing in the z-direction.




Triple integrals in cylindrical coordinates

The volume of any 'extruded' shape is the base area times the height...

' ...so for cylindrical coordinates, dV becomes:
I"’: dv =(r dr do) dz
| : dV =rdz dr d6

ZA

r=mh(0) o T
T ﬁ=B: >
) ’
; b=a\y © A~y drdb
r=h,(8)

(0)us(reosd)
IHf(X,y,z) i dy dz = fhz_" I f(rcos®,rsind, z) r d dr d0

2 1(0) i (r os0)

Examples...

2 .
Ex) Graph (2, ?E,l] and convert to rectangular coordinates.

Ex) Convert (3, -3, —7) to cylindrical coordinates.



Examples...

Ex) Setup the integral for jﬂ xyz dV where E is a right circular cylinder with the z-axis as
the axis of symmetry, with radius =2, fromz=0to z = 3.

#22) Find the volume of the solid that lies within both the cylinder x* +y2 =1
and the sphere x* +y* +2z° =4



15.8: Spherical Coordinates

Rectangular

Defining Spherical Coordinates

dV = dxdydz, dxdzdy, dydxdsz,
dydzdx, dzdxdy, dzdydx

, Cylindrical

Like polar in x-y
plane, plus z

A
* |

y

—————

Converting...
rectangular to cylindrical

r=qfx*+y* @=lan"(y] z=z
X

cylindrical to rectanqular

x=rcosf@ y=vrsinf

z=z

dV =rdz dr dO

'phi’ (pronounced 7
"fie") is the angle in
the 3D space between
the z-axis and the

: : 'rho’ is the radial
radius to the point. kot o st

distance from the
origin

= 'theta' is the angle in
.. the x-y plane between
the x-axis and the
radius projected onto
the x-y plane

X

Converting... rectanqular to spherical

2 _x4p2 422 d=cos| Z| O=cos?| —E—|=sin"| 2
pr=x"+y*+z" ¢=cos (p} c g

psing

spherical to rectanqular
x = psing¢cosd

y = psingsin@

in x-y plane: » = psin ¢

z= pcos¢

dV = p’singdp dO d¢

)

Understanding Spherical Coordinate Geometry

On the plane formed by z-axis and the radius to the point:

(psing)cosO =x



Triple integrals in spherical coordinates

...s0 for spherical coordinates, dV becomes:

dV = (length) (widfh)(hefgkt)

=(pd¢)(psingdd)(dp)
=p’singdpd0dg

[[[f(x..2) dx dy dz

i

R S

b
jf(psin¢cosﬁ?, psingsin @, pcosg) p’sing dp d6 d¢

Spherical coordinates are best for...

e Spheres
e Cones where we want volume to the top of the 'snow cone'

use spherical for this... use cylindrical for this...

\/

#2a) Plot the point whose spherical coordinates are (5,£,§J
then find the rectangular coordinates of the point.

Examples...



Examples...

#4b) Change from rectangular to spherical coordinates: (—1, 1, \/E)

#9a) Write the equation in spherical coordinates: z° = x” + y°



Examples...
#13) Sketch the solid described by: p <1, 3% <¢<rmw

#15) A solid lies above the cone z=./x*+y* and below the sphere x° +y2 +z° =z
write a description of the solid in terms of inequalities involving spherical coordinates
(find volume of this solid).



15.9 (extra content). General Transformations, Jacobians, Disk/Shell method for volumes
Optional, extra topics

The following topics are not officially part of the course, but | wanted to mention them for completeness.

The first is that we had a method to find volumes back in Calc 1/Calc 2 and even in Brief Calculus:
the disk and shell methods for finding volumes of revolution.

If we rotate this area around the x-
axis, we form a 3 dimensional volume
called a 'solid of revolution':

Volumes of Solids of Revolution, Disc Method

We can use an integral to find the 3-D volume of a solid of revolution, by
computing the summation of an infinite number of small shapes, but instead
of the shapes being 2-D rectangles, the 2-D rectangles would also revolve
around the axis and form 3-D cylinders called 'discs":

~N 'helight', Ah V= Z (volume of cylinder]

V=Y xr’e«height

b
V= jm‘zAk
radius, r a

\!

Volumes of Solids of Revolution, Disc and Shell Methods
'Disc Method' 'Shell Method'

7

| |
VZJ-”"”ZA]’ V=I27rrhAr

rect | axis of rotation rect || axis of rotation



Volumes of Solids of Revolution, Disk and Shell Methods

Sometimes, the solid didn't extend all the way to the axis or rotation so we had to use the 'washer'
variation (or similar for shell method)...

rectangle doesn't go all the way to axis

rectangle goes all the way to axis
there is a 'hole' so we need two integrals

no 'hole' so only one integral

Disc/washer

Shell
V = [zr’Ah—[zr’ A v = [2zhAr
V:Ixx;ajz—j?rxlzajz V=I2?rx[f(x):|dx
g ¥y
V=nyldc—[myds r=[2mls0)] 4

This method only works when there is a symmetry, such that all variations are functions of only one

variable. We can then express the volume as a function of this variable, and integrate along that one
direction.

In Brief Calc, we stuck to shapes with circular cross-section, but in Calc1/Calc2 other shapes are
considered (for example pyramids with rectangular cross-section).

What we've covered in this chapter gives a more flexible approach that can be used for all solids.



General Coordinate Transformations

The other optional topic, which is covered in our textbook, section 15.9, is Change of Variables for
General Coordinate Transformations.

We found that for double and triple integrals, it is sometimes easier to cover the region in the domain using
polar, cylindrical, or spherical coordinates:

Polar (2D) Cylindrical (3D)
. .
il
—{
*
i N L
0
o
s 5
x=rcos@ x=rcos@
y=rsinf y=rsind
Z=
[[/(x y)dxdy [[[ £ (x,3.2) dx dy dz
D E
= ”f(rcos@, rsin@)rdr d6 =J'Hf(rcost9,rsin 0.z)rdrdf dz
D E

Spherical (3D)

zZ

x = psingcosf
y = psingsin@
Z=pCcos¢

JIf / (x.9.2) dx dy dz

= Hj-f(psinoﬁcost?,psingisin Q,pcosgi) p’singdpdfdg



General Coordinate Transformations

These particular coordinate transformations are extremely useful and by far the most widely used,

however, in some specialized circumstances, you may wish to transform the coordinates in some
other, more general, way.

For example, you may wish to transform something in coordinates x,y,z to coordinates u,v,w and therefore
define some other way to express one coordinate system in terms of the other system's variables:

Polar (2D) x=rcos@ y=rsin@
C!Iindrical (3D) X =FCos 9 y= rsin@ Zo== =

Spherical (3D) x = psingcos@ y = psingsinfd Z=pCoSQ

General (3D) xX= x(u,v, w) y= y(u,v, w) Z= z(u,v, W)

The tricky thing is that the volume (or area) element is not just du dv dw, it generally must be multiplied by
something to account for how the shape of the translation forms the volume:

Polar (2D) _Uf(r cos @, rsin Q)dr do
D

Cylindrical (3D) J'_[ f(rcos0,rsin0,z)rldr do dz
E

spherical 30)  [[{ /' (psin ¢ cos @, psingsin 0, pcosg)[p” sin gl p d0 dg

E

General (3D) J‘Hf(x(u, v,w),y(u,v,w),z(u,v, w))@du dv dw

This extra multiplier is called the Jacobian of the transformation.



General Coordinate Transformations - Jacobian of a Transformation

The following result is derived in section 15.9 of our textbook, but there is a method you can use to
determine the formula for the Jacobian of a tranformation, given the transformation equations, and it
has a unigue symbol:

ax o o

ou ov ow

Jacobian = —6(x,y,z) = @ @ Q
(w,v,w) |ou v ow

0z 0z Oz

ou v ow

This pattern can be extended to any number of dimensions. In 2D, it reduces to:

ox &
0(x,3) _|ou av
o) |2
ou ov

We could, for example, use the Jacobian to verify our usual multiplier for spherical coordinates:

x = psingcosf y = psingsind z=pcos¢

Ox Ox

Ox
5 Oop 00 0¢ (sin¢c059) (—psinﬁsine) (pcosgﬁcosﬂ)
(%, y,2) |y % % =|(singsin®) (psingcos®) (pcosgsind) |
(s | (o) 0 (Cpsind) |l

determinant)

a(p,0.4) |op 00
L i
op 00 o¢

= (cosg:ﬁ)(—,r::2 singcos ¢sin’ @ — p’ sin gcosgcos’ 9)+(—p'r.in;t?)(,m-;in2 gdcos” @+ psin’ gsin’ 6)
=—p’ singpcos® gsin® 8- p® sing cos® gcos® 0 p* sin¢(sin2 @cos® @+sin” gsin® 9)

=—p*sin ¢cos’ ¢(c:0s2 @ +sin” 0)— P’ sin gsin® ¢(cos2 @ +sin’® 6’)

=—p*singcos® ¢— p? singsin’® ¢

=—p*sin ¢(cos"" ¢ +sin’ ¢)

= |—,f:r2 sin ¢] 4 p’sing

You will likely not need anything other than polar, cylindrical, or spherical, but for certain specialized fields you
could potentially need Jacobians.

Mathematicians - if you become a mathematician, you'll likely need to derive and prove things even in your
intermediate and advanced calculus courses. You could end up working in topology or manifold theory which
explore the properties of higher dimensions.

Theoretical Physicists - if you end up studying the (currently popular) String Theory, you'll need Jacobians
because this is based on the assumption that the universe actually inhabits an 11-dimensional space.



