Calc3 — Lesson Notes - Chapter 14: Partiﬁl Derivatives |

14.1: Functions of Several Variables

Multivariable

2D functions

' One numerical value in the
domain maps to one
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Sketching multivar

Impractical to skefch surfacé 3 E;Jy hand, can use software:

i
i

able functions

ii

For planes, c¢an use mtercepts jto sketch..,
Ex) Sketch zwf(x y) 6-3x-2y g/“/
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Domain/range of milltivariable functions

' Just as with single variable ful

values for which there is a smgle output value defined and the range isthe set of all outpu

Thinas that can limit the domain:
stete a domam (whoever created it specifies where it can be used.)

« The function itself migh

» if the function is defined a)gebraicaily, anything that would can an undefined condmon

~ be excluded:
» Dividing by zero

e Even roots of negatlve numbers |
-« Logarithms of zer or negative numbers |
« lf the function is deﬁnedw graphically in 3D by a surface, then the domain is the par1

" plane over which the sur’f’ace exisis. .

o ifthe function is model ng a physical phenomenon values which make no sense|n
excluded (negative liters of volume negatlve time, shapes with negative dimensions,
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Level curves, Ievél surfaces, contour maps

For a function z = {(x, y) rme can find a level curve by setting z equal t aconstant
and tracing out the path in the (x,y) domain which produces this z vall é

For a function w=f(X,y, z} we can find a level surface by setting w equa alito a
constant and highltght tbe surface of all poznts in the (x,y,z) domain wh’lch produces
this w value. \

A set of level curves or tevel surfaces is called a contour map. }

|
Level surface
(PN R - T U A

Level curves

2= 1(x]

‘ »)
(height)
Note that how closely spaced the level curves are is determined by how rapidly the
output value is changmg.. fast change close curve spacing:

3D

P=f(x,,2)
{pressure

In this area, level curves gpacing is very . ;zgg:rageoah;;gﬁi ?:rovhi:n?}?r?;{e‘:.,f

close, 50 height s ghanging very rapidi
{more g,t@epg) ging very rapicly rapidly {less 'steep’)

Ex) Draw a contour map showing several curves for f (x, y) = x3 -y
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14.2: Limits and» Continuity of multivariable functions -
Limits of Multivariable Functions

For single-variable functions
Wa've studied the idea‘; of a limit in brief calculus and AP Calc BC:

If, as X éppfoaches a »j'alue ¢ in the domain, f(x) approaches value L in
direction of approach, then we say the limit of f{x) at x=cis L.

lim f(x)=L

X3¢

the range, regardiess of the

As we approach x=3 | y ﬁf(x)v

from the left side, y
approaches 7, so we say

As we approach x=3
from the right side, y
approaches 7, so we say

the left-handed limit L the right-handed limit
exists and is 7 (the exists and is 7 (the
number being ( x | y=fx " o XY number béing
approached). 29 | 6.87 B 33 |/ 812 approached).
2.95 | 6.92 x=>3 x—3 315 || 7.48 i
}.iaz? f(x)=7 299|698 3.01 | 7.002 h:n;;, f“(x) .
X3 x->3"

Because the same y velue (7} is being approached regardless of
direction, we can say the limitas X approaches 3 is 7 (without

specifying a direction). 1, o
limy f () =7

Note: it doesn't matter what happens at exactly x=3, the limit is about the value being approached.

For multivariable functions

of the direction of approach, then we say the limit of f(x,y) at x=cis

lim f(xy)=L

If, as (x,y) approaches a point (a,b) in the domain, f(x,y) approaches value L in the range, regardléss

-

{x,y}>(a,b)
Ways to picture this:
f(x,y)
z=f(x,y)|
range .
domain
If you approach (a,b) in the domain, from Eor every point (a,b) in the domain there is a value L in the
any direction, the same 2z limit value is range and for every & region a distance around L there
approached. N exists a circle of radius § such that .

0<J(x—a) +(¥-

BY <& and|f(x,y)-L|<s&




Limits of Multivariable Functions

Imagine you have two functions and some values for each are given in|the following tables:

Values of (%) , : Values of g(x,¥)
N y| -3 -2 1 0 1 2 3 N 4 .—3 R 0 . 4 2 3
-3 el 14 |75 (78 (74 |74 173 L3 | 73] T4 ] 48 08 1141 341 83
2 741 7517576 (75 |75 [ 74 2 34| 56 I 558]-16 1251 35] 54

-1 751 78| 77|77 |77 |76 |75 -1 15| 24 {67 |37 |17 |26 ]33
0 751 77| 78|78 |77 |76 | 76 ~jo 05| 14}78 |68 1-57]-46}|-26
1 76] 78| 791 7e 77| 17] 76 1 -36 |45 |79 |58 7.7 {477 178
2 Ty 18 re 18| T8} 78 2 ~1.7)-7.8 479 |-611}-321-53
3 I
4 4

791 80| 81]80 79|80} 78 - Lal-23 | 813029110 ]28
81] 82| 83182 8181179 31] 561 8322 |31]41]59

Both of these functions are undefined at (2, -1} but for the limit, that doesn't matter. Instead,

we look at what output value is being approached as we approach from different directions.

For f{x,y) the output values seem {0 For g(x,y) the output values seem 10 approach
approach 8.0 as the limit, regardiess of different values depending upon direction 50 we
direction 50 we can say. must say the limit doesn't not exist.
lim x,y)=8 i = DNE
ARy () limy & (%)= DNE

(xy)(2-)

Computing Limits of Multivariable Functions

Can we find such limits without resorting to listing many values? Yes...we try approaching from
directions which are easy to compute (along the X- or y-axes, along the family of lines y=mx, along
parabolas, etc.

It is easier to show that the limit doesn’t exist...if we find even one counter-example where different
values are being approached, then the whole function does not have a limit at that domain value.

To state & limit exists, in practice, we testa variety of cases and if they all approach the same value
we can be reasonably confident the limit exists, but to be certain we must use the Squeeze
Theorem and find two functions which we can show are above and below the actual value, then
show that these functions have the same limit. ‘

This is best to see through examples...

Ex) Find the limits: | m

A8
lim X'~y [t ahioral hunchion . 4
Ty . / o Tiy plugging in (if welt héhaved, this
(ry )~(2:4) xz +Y 2 Daﬂ\ﬁ in D N ?éyfg) } (‘Xf ﬁ) # [@f &x} often works) ‘
» if plugging in resuf In dividing by
ca/hj?\/‘uoy CM@WNM zeyo you can try:
' « factori
eﬂ:‘&)&"l“” ﬁp @) . :;(%;L?ig ivision
g ' 1= « rationafizing (if there is a radical)
We ant %ﬂmm‘? v (2,4) . Usel]
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\ f w
w’ﬁf’t’g i a’mi‘%' We can't use our tactics for single variable

functions, because the function can be well-
behaved from one direction but discontinuous
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from other directions.

" But we do know that

polynomials and rational
funclions are continuous

- over thelr domains,




Computing Limits of Multivariable Functions

Ex) Find the limits:
2 2

. X -
lim — 4 5
(x3)(0.0) x° + y© -

If we are evaluating a limit at a value not in the domain of the function or for any other
reason are not sure about the continuity of the function at this domain location, we need
to switch tactics: Instead, we gvaluate along different functional paths by defining
relationships between the function variables to establish a path, then evaluate the limits

along many different paths.

We try the following paths, in order of difficulty:

e The x and y-axes: y=0,x=0,
« All lines of form: y =mx +b.
« All parabolic paths of form: y = ax’+bx+c.

~ {f a limit does not exist, usually by the time we get through parabolic paths, one of these

limit will be DNE...as soon as we encourniter one DNE, we declare the whole limit DNE,

if all the limits through parabolas exist, then we still haven't shown conclusively that the
fimit exists along all paths, so we switch tactics again and use The Squeeze Theorem for
Multivariable Functions {(will show in later example).

Ex) Find the fimits: (o) ust I howeh, $0 Ary S

X~y
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(=00 x* + y?

Ex) Find the limit:
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At this point, we believe the limit may exist but haven't shown this concluswely, so we switch tactics
to using the Squeeze Theorem for Multivariable Functions.

Consider our function: 3x° y
' ¥+ y2
3x’y X
This can written as two factors: 5 5y 5 3y ._putthe left factor will always be less than 1:
X4y x4y - ) o
2 .because ify=0this=1,andifyis
s <1 anythmg else, the denominator
¥y increase. As y approaches infinity,

this factor approaches zero.

So depending upon the value of v, this factor will always be somewhere between 0 and 1. That means...

(0)3y< 3y<(1)3y

3xy

0< <3y i y>0
x+y

Iys— 3x*y
x+y

<0 if y<0

. 3
To accomodate both of these cases, we can use an absolute value like this: 0= 3 +li:§2 <3|y|

Now for the Squeeze Theorem: if we evaluate the fimits on the ends and they evaluate to the same number, then the limit in the middle
is also the same value: » .

3% |y

lim 0< lim —— 3|5
(#.)->{0.9) 0.0 x* + y NEx y) -+{0,0}

2
0< 1im - M <0
@700 x* + y*

im P
m Ty T
00 x* + y

Therefore, our limit's value is zero (for any path):




M y%f(x)

14.3: Partial Derivatives
Partial Derivatives

O\

i

i

Derivative = slope of line What would derivative mean for a
tangent to curve surface? :

z=f(xy)

a
if we hold x constant (on plane x=6) If we hold y constant {on plane y=8)
derivative could equal slope of tangent derivative could equal slope of tangent
line of z=f(y) curve. line of z=f{(x} curve.
These 'directional’ derivatives are called partial derivatives.
oz ]
~ £, (xy)= 5 means:

"Differentiate f with respecttoy . "Differentiate f with respect to x
“while treating x as a constant.” while treating y as a constant.”




»

fx(x,y = 3)3 ;@1

f;,(x,y P

fx (595) - }(5)1:3(?)2’:; (o) ,

£,(5,5)= U(s)- b)) =13

Tryit: Find f,. f,, fx(2.-1) £ (=23
I f(x, y)=2x"-3y+x
Lylap=bxte2r
Lyl2p= €02 “”W?@

Lyl = 2
"% (’,'5'53") = ’T’}v




Higher order partial derivatives

i (x, y) and f, (x, y) are known as ‘first-order’ partial derivatives.

But these partial derivatives are also function of x and y, so they form
their own 'surfaces’. We could take partial derivatives of these, which
are called *second-order' partial derivatives: o

Starting with /2 (%.7) Starting with /» (%)
L
fu(5) o
Interpretation of 2nd partial derivatives Jane

f « Is the 2nd derivative
with x aiways as the variabie
and y constant (on a plane)

j stope values for change
n z as x is changed

‘This represents how quickly the

first derivative is changing as X is
increased, meaning how quickly
the 'slope’ is changing,

Therefore f, = represents the
concavity of the trace of the curve
on the constant y-plane at this
point.

jses, slope decreases, so f,, <0
tface is concave down in the x direction.

plarie

7, y I8 the 2nd derivative ¢ x= 3
with x always as the variable »
and y constant (on a plane) slope values for change [ 2

in z as y is changed .
This represents how quickly the 2
first derivative is changing as y is - "{”‘
increased, meaning how quickly “,

the 'slope’ is changing.

Therefore fw represents the
concavity of the trace of the curve
on the constant x-plane at this
point,

As y increases, slope decreases,
0 f, <0 andsurfaceis
concave down in the y direction here.

As y increases, slopefincrease,
so £, >0 andsurface is
concave up in the y direction here.




Interpretation of 2nd partial deriVatiV’as "

jyx represents how quickly the

This represents how quickly the
first derivative in the y direction
is changing if we move in the x
direction,

f've never seen a stated official
meaning for the mixed derivative,
but to me it seems like it
represents how rapidly the

_ surface is "twisting’ in the
region of a given point.

J ®—0.5 per unit in x

Surface is twisting slowly as we
‘move in X direction,

J . represents how quickly the

This represents how quickly the
first derivative in the x direction

is changing if we move inthey

direction.

| believe this represents rate of
'twisting’, but now as we move
in the y direction,

1 -1

Sy = —0.5 per unit in y

Surface is iwisting slowly as we
move in y direction.

Clairaut’s Theorem

Suppose fis defined on a disk D that contains the point (a,b).
If the functions 7y and £, are both continuous on D, then

fy(ab)=7.(ab)

If our interpretations of mixed derivative are correct, this means that in a small region the

rate of iwisting in x and y directions is always the same (which makes sense because itis a
smooth surface). .



Ex) Find fxx;f)a;y f,g,s j;,x for ‘f(x y) 2}.’.‘ ““33?”{‘“352

Lyz= 65542k LH=—=
10)4% - 12x+71 'pﬂb —o
&j =0 ,pw;;»o-

Ex)Find f,, f,, f, for f(x,y,z)we’”iﬁz
L= WrdeRx) - )™ y
£y (D hbA= (e x

£z = (c)?aa:%’} (e )’LC) eﬁ

10. A contour map is given for a function f. Use it to estimate

2, 1) and (2, 1).
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4. The wave hieights & in the open sea depend on fhﬂ; speed v
of the wind and the length of time ¢ that the wind has been
blowing at that speed. Values of the function i = f{s, f} are
recorded in feet in the ft}ﬁiwmg iatai&.
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Ex) Find the first partial derivatives of f(% ) J‘ cos( z) dr

_L - Firdawerinf Treorem
«ﬁx/axéijf?i;d [ &%/J woda = co(Y 5 %«M s /Zgw«l’

Z“Q‘ = os(x3)] F9 (7 e
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14.4: Tangent Planes, Linear Approximations, and Differentials

Tangent plane to a surface . _
N Starting with an equation of a plane: - (the constant on the right is set by the point)
a(xwx,,)+b(y-yo_)+c(z-zﬂ)=0» , ax+by+cz»—«(axﬂ+byo T\"CZO)mO
: ax+by +cz = (ax, + by, +cz,)

Divide by ¢ and solve for z —Zy: axvby+ez=d

b
z2-2z, m—%(x—x(};)—-z(y—yo)

If we stay on plane y=y:

z-1z, =-~g~(x-x{))

Z2y =M, (xm xg) the multiplier Is a slope in the x-direction for peint-slope form line
[f we make this slope the partial derivative, then this line is tangent to curve at the point; _
z2—2y=f, (xoayn)(x“xo)

ifwe so ihe'same for the other term on plane x=x, we get:

» zv“"zo ﬁf;c(xwyo)(x”xo)';"f;(xmyo)(y“yo) ‘
Equation of tangent plane to surface z = f (x, y)'at point (xo, yo,zo)

www.geogebra.org/m/mKraSHVX

™

L By f;, {xga}’o}(.}}m.}’ﬁ)

Ex) Find the tangent plane to 7z = 2x* + yz at(1,1, 3). =
. [~/ di ~ P
= ZX?'-Fy?'——? ~o 'prw ) metlo «# //a’t/

ﬁX;wX / - ’tey:Zj/

#%2“' F:?a‘{/l [,3?
Cat L3 e, |

ARty (=P (L
_ — - =1 '
-ﬂx 7‘(’64) ""{ ) g‘ﬁ = 2(/)"2/ "F‘E’ x+ 2y - &= é\"l 2@"'1) té’, i,3>

Ao lare Ft(x—:)’-l-zly—/) —(z-3)=0[ —Y42z -2
, or R ‘ . » Wzy—%:a ]

N . L{x‘;t( _},zj -2 — &4 Zm2

Tz -2-3]




Differentials
2D ' : 3D

secant ling {ort B bk Ay flar Ax B+ 89

surface 2 = £z, vf
tangentline ;

Ay

SSCUNG

s,
o sten

DA

{G“’?‘ Ax, b4 Ay 0}

m" (7R X1

ay=dy

 tangent plase
£ Fiay By v fla e a3+ £y0, By ~ by

A differential is a very small (infinitesimal) change in a direction:

% = slope of secant line Z mf(x,y}——-f(a,b)«u;(x,y)(xwa)+j;,(x,y)(y-b)
' (z=f(ab))= 1 (x3)(x-a)+ £, (x.7)(y-b)
%=f’(x):siopeoftangefztline dz = f, (x, )dﬁ.f (x y)dy
dy = f'(x)dx dz“_aidx +Za
ox Oy

Difference between dz and Az

sacant s Remember in brief calculus when we talked about the.
difference between ‘average speed' and 'instantaneous
tangent line speedv?

Ay -8 As
avg speed = 2L =
12 -1, At

(Use 'algebra’ for ‘average’)

-,
instantaneous speed = lim 22751 = (1)
850 f, —f,

(Use 'derivative' for the instantaneous speed at t;)
Similarly, dz is calculated using derivatives: dz = S (xy)de+ £, (x,y)dy

But Az is calculated using algebra: Az = f (xz, yz)— f (x,, y,)

Ex) If f(x,3)=x"+3xp—y* if x changes from 2 to 2.05 and y changes from 3 to 2.96

a) Find dz b) Find Az [u,s(,, alpehrn o4 wvt;vﬁd’)
Loz Zx+2: -2 ’
ww 2xeyl dyzaxyy Dz £(zom20) ~ €23

Az= ( Zxﬁy)dx + (3x 2Dy o= [ (205 Bles)za)- (Zo%)aj

“A'(Z 3) : ) o N
ﬂ(k[ (236 [2e5-2] +(3(2)-23) 2965 [ (2)*+3GX3)-(2P
Az = IB(o. éo)(»—a:f) N Jz=13. 6119 -2

Pz = 06T ]




Linear Approximation www.geogebra.org/m/prqajfgb

2 4yt ez =0 Zooming in

Ax+2y-z=3

In the vicinity of the point of tangency, the tangent plane is a good
approximation of the surface.

In 2-D, if we are not too far away from x, then the tangent line is a good approximation to
the curve (x):

For the secant line {on the actual curve):
v (¥=20) = My (2~ %,)
tangent line (£(x)~r(a))=2L & {x ..... a)

Ay f(x)=f(a>+~5{-(x—a)

secant line

SN

For the tangent line (with slope which is the limit as
change in x approaches zero = the derivative):

(y ya) = Phgent (x“'xa)
(76)£ (@)= im 22 x-a)

Ax (f(=)-7(@)=F(x)(x-a)
f(x)=f(a)+ 5" (x)(x~a)
Then the f(x) using the tangent line is an approximation of the actual f(x) on the curve:

I g F (%) e S (%)= f(@)+f(x)(x~a)

Similarly, in 3D we can approximate a surface using the tangent plane.
Edquation of tangent plane to surface z = f (x, ) at point (%, ¥y.2, )
z=2y = £, (%, )(x =% )+ f, (%00 ) (¥ = o)
z— f(a,b)= £, (a,b)(x~a)+ f,(a,b)(y—b)

z=f ()= f(a,b)+ 1. (ab)(x-a)+ 1, (ab)(y-b)

P e . ————

%

fab Ax. b+ Ay, fla+ Ax, b+ Ap)

vk

T

g Az

Fla, &)

surface 2= Fix, 3

fb Fa By}, |

b+8,0)

_{d, b, {)} y @ dy "

. tangont plane
2 fla by = o, Bifx - a) -+ f}f{“s bty by



Linear Approximation
Examples: Find the linearization of the surface, then use it to approximate.

2D ST approx
‘ (55 0.38) y-value
approximate f (5.5) for f(x)=x e ( ) st
F@~f @+ (D) xma) s T
/ o, " o
+ (7‘)2« ik ¢ 2J% i
HMoose. a =4 gretes
Yy A— L SRR R A R P LU th
0= = - comeron 25
£lx) . L@ ¥R x—) x=4 k=55
e 2+ (=)
Hs=z+d (O =241 = 2 v 535 = 2ow (2,7%)
| schat F8) =55 =235
Examples: Find the linearization of the surface, then use it to approximate.

3D
approximate f (2, 15) for f(x,y)=0.2x+0.1y
f(xy)~ f(ab)+ f,(a,b)(x~a)+ f,(a.b)(y—b)

£y=24x = o3y%
». choose. éﬂé)"-:"(lt ')
4= ozl ol =23
£ ()= 04ld =0
£yCh 0= 830\-=0.3

Flyp)ztlap) +ocle b)lx-2) +65 GAlG ) ;
aP(X,y)-x 0,3 + 2 (x- 1) +0:30g~7)

£z 15) = 03 +od4( 2D +03(151)

= 0,3 voi(p) +03(05) |
203408+ ol B Neygr ey Bs L I3PS
Hois) > 0,85 | o,.c;n'—udz-'é(z,ur) = ?‘“lZ) tat fis] |



14.5: The Chain Rule

Chain rule for single variable functions
Remember the Chain Rule from brief calculus? dy dydu
& duds
(Almost like "unit analysis’ / cancelation)
It enabled things like this:

SX?» o div
= Find —=
y=e Fi

defineu=3x* theny=¢"

d , E{'T—e =€

dy aﬁ;du
d
P du e

=¢* (6x)
...which extended all our derivative shortcuts

Chain rule for multivariable functions

For muitivariable functions, the situation is a littie more complex, but still based on this 'unit
analysis' idea of multiplying derlvatwes fo get ‘cancelation’. ‘Fhere are two main ‘cases”

Case 1: When z is a function of two variables x and y, and these two variables each functions of

the same single variable, t: z=f (x»}’) .f (x(t) y (”)) Could draw this tree to help

remember.

d _Oordx dzdy o Z o

dt oxdt Oy df A 5;/ \5;’

dz
EX) Find — when t=0, if z=x"y+3x" { {
dt X = sm%ﬁlt) : : 14

Y = C08 t)

dr _Yroy 4 20
s m" 2y

Co= (zxy +33®ézwéz{—)) & (xg?) (=51 J

NP
/ UJN-#P’(Z/ / lj w![“)’ /

&) - zéo)[l)k%f)" )(zeos()) (=" IS, }[»5.%5’@))
) =

oy

N Je



Chain rule for multivariable functions

Case 2. When z is a function of two variabies x 'and y, and these two variables are each functions
of the same two variables, sand t: z= £ (x,») = £ (x(s.2), {s,£))
Could draw this tree fo help

0z Ozox Oz oy remember:
'8;7-_3;3;*5;5; ' & zZ &
- oy N

b o sty s iw s

or oxor Oy of | ayV‘ a/\}l

Ex) Find gz-and%z« whent=0,if z=x y+3xv g
x = ¢ sin(2t)
y=s"cos(t)
g% ¢ %'%z e
T A X ré‘éxf)(’ aalt)) ka2, X 4 ;5“ ;C:s) s
=(2xy 43y ‘!)[g Ssnlze) Y+ ( 3 , y=5
=(alys+3(5%) NSsp) + (@ 4@(;7{55 ) )35 (o)) (5
= _ Qe % _k@ﬁ”?j_

. s g@ﬁ‘) +()(Z+122(J3)(; (J %( 3)})(;:3{0&%@{9}3 gs € ]
= ZZ%’*’?J{)(@ e 52cash)) *[@L‘“"W 51t M
;> Y e’z I,s/

Thxs idea is extendible for any humber of first or second level vanables
X == 7'93

y=rs‘e”
N
Tree for this would look like: . z=r*ssin(r)

Ex) Find é—-whenr~2,s==1,tmo,|f u=x'y+y*z
A : .

u% LOoudy oulz
T ox

Oy Os Oz 0s

Ed

) + (32 n ()

Qz#mmmmm
( t(2) 3’[b)(z«)@ w2 + &Wv‘}i )/ 2@5@5 )+ (3( 2) f}*«)@ (/ 2) m(@))

i



Implicit Differentiation ‘ p
We first encountered implicit differentiation in brief calculus: Find —-d% it x + Xp -+ y3 =5

When it wasn't easy or possible to first solve for y, we just took derivatives in place, using the
chain rule to multiply by a dy/dx for terms where the variable wasn't x:

L]+ Slole 2 ]=2ps)
/’(product mI;S"”“~~.
FF I @ D0 Gl ST 20
L2121+ ) Sl L= 5

3x +x(l%)+y(1)+3y2%= 0
y

%(x+3y2) =-3x% -

dy _=3x*~y

& x+3y

Now we can extend this more generally. If an equation written as F (x, y) =0 defines y implicitly
as a function of X, then we can apply the Chain Rule to both sides:

gﬁﬁd#@ﬂ“" and since f’ﬁml

ox dx By dx —
oF

Qﬁ(l) %“‘gxwo ‘b’xmax_ F

N * a  OF F
&y

Find % i X Exy+y =5

F=x+xy+y’ -5
F =3x"+y
F,=x+3y"

dy _F,_ 3x+y

@ ) };; x+3y°
Not only is this easier, we can extend it for higher numbeéz of variables.
For z= f(x,y,2), express as F (x,y,z}=0 Then for P by the Chain Rule :

OF dx OF 8y OF oz O ay
e e e e = ) ox a9 _
Oxox Oy ox oz o Also, = =1 and
: _ {because x an orthogonal
OF OFoz_, input varimww'r e
ox 9z ox Simitarly, foréz-: e ﬁ{/ A!I:;B
ay i Jﬁ_ :q{?&j
oF F St
&_ x F & _ o F cont
& OF F &y O F
oz &




 Higher order partial derivatives (not gaié‘;g over in class, see ex 7 in book and notes)

We can use these ideas to take derivatives of derivatives (higher-order derivatives):

Ex) Find Z and &z
or

57 ifz=f (x, y) is some function with continuous 2nd pamat derivatives and

& _ddx 2y x(r,s)=r’+s®, y(r,s)=2rs
1st derivative by Chain Rule: 6r = prve ay e

P m(2r)+m(2s*)

Now taking the 2nd derivative
C ¥z

=% &[ (2r)~§~m(2s):|

- .é%[%(zr)} -67[5(2»9)]

Each term requires product rule:

=(s‘fz_i[(zr)]+(2r)ﬁ[§zx]] (az e ) [ ]]
mz.__+(2r)_u ( (0)+(2s )5,[ D

But these terms are not simple 2nd derivatives...they require using Chain Rule:

o[er]_ofer]ex, o[ar]oy '
?a}"[?&]”ax[ax]aﬁaym peat v 22

o |or
olez] ole]ex olexl|oy &z
e | 2 | e | | 2r 2
&*[@z] Bx[ay]ar |y = axfw( )+ 5 (%)
Substitution these back in:

Py +(2 )( (2 )+- (23)] (23)( :: ;(Zr)-*— Z;f(%)]

2 2 2
=2% 4 0 f~i~4rs OZ , 4rs &z 44522 f
. Ox ox Oyox xdy

=2 same by Clairaut's Theorem
2 2 2 2

Q—MZ—QZ--Mr ?1—2-+8 oz +45° G f

ot Tox o xdy oy




14.6: Directional Derivatives, Gradient Vector

Note: These lesson notes are presented in the order that'makes it easiest to understand
N and use, but is not the order in which things are usually defined, derived, and proved.

No derivations will be included here, but there is a separate PDF’ showing all the derivations
on www.mifelling.com if you are interested in the details.

Definition of the Gradient Vector _
For z=f (x,;v) the Gradient Vector is defined to be:

v/ (x5)={£(x). £,(5))

AV (69)=(f(2), 1, (%))

this symbol is

called ‘del’ This is understood to always mean a vector, so an arrow Is

implied and typically not inciuded over the V .

Geometric meaning of the Gradient Vector

The gradient vector is in the domain (x-y) plane and
points in the direction of fastest change in z at the
given point.

sz(x,y)m%x2+y |
Vf = <-12»x, 1>
X At (x,y) = (2,3)
7= f‘(2,3):%(2)2+(3)m4

Vf =(1,1)



Directional Derivatives

We know that the derivative inthe x and y dimctions are given by the partial
derivatives, f and 7.

What about derivatives in an arbifrary direction? These are called directional derivatives.

First, we need to define a direction, and this is Then it can be shown that the derivative in the
~ done in the domain (x,y-plane) because direction  arbitrary direction is the dot product of the
doesn't depend upon what the output value is. gradient vector with the unit direction vector:
We define a unit direction vector:
_ -
o - D,f(%.y)=Vf(xy) %
unit direction vector, » ={a, b}
z=f(x.y)
b Vf
R
a=cosf \
o ' 3
> X e
A .,
You can think of this as the gradient representing I ; .
the derivative in the direction where it is highest ! i
{fastest change in z), and by faking the dot product =

we are finding the "projection’ of this gradient vector
in a given direction (the amount of the maximum
derivative which is in this direction).

=¥

In fact, if you use the magnitude and angle representation of the dot product:
Duf(st’) = Vf(xay) ¥
D, f(x,y)= ‘Vf(x,y) }fz?[ cosd

cos @ is maximum (1) when @ =0 which occurs when U is in the direction of vf
and is minimum (0) when the vectors are perpendicular,

unit direction vector, » =(a,b)

a=¢cos8

Note: Very important!

The direction vector must be a unit vector!




In higher dimensions ,
These ideas are all extendable for a higher number of input variables

if w=f(x..7)
Vf(x,y.2)= < fi(x9.2), £,(xy.2), j;(x,y,z,»

. ->
D,,f(x,y,z) - Vf(xsyzz) U
.except that now the domain is 3D, so the direction vector would be a vector in R?

Gradient and relationship to level curves

A great example from the book to illustrate: If f(x,y) = xe”

Find the rate of change of f at the point P(2,0) in the direction from Pto Q(1/2, 2).
In what direction does f have the maximum rate of change? What is this maximum rate of change?

N (9 = <6 4>=<e? )(e”>
V(2= (52 = 21,2

vs 2= (52,0 = 7,22 | |
T = %2> < }»2.71,417«)’ &“%/27‘“(-%} %‘->
ey P (3
/33:1 i> | ' &

o o e :é’
;v.,ﬁ{m w4 v €12 11)4»(1)6‘%9

, _ @
Max /‘kaoﬂﬁ'MD@ ‘A dm,g:dko'\o*ﬁ V"‘lr l<l Z> }
W fale o-ﬁcfuvm}m, LS tv,g[qto)\ = \) | e x|

vvvvv

Let's look at these results and their relationship to the level curves...

YA Q
PQ <-- 2> ..1s the direction vector between the points. 2 4 % s :%g
5 16
i - = ]3
- [ 34 ' g by
U= <m§,w> ...is direction normalized to unit vector length. 17 - 2
»0)
‘ 7 =48
Vf= (1 2) JIs gradient vector which shows direction of 0 i 1 + P e, 3%

fastest change in output values.
Motice how the gradient points in a way
. . , where the level curves get most rapidly
[Vf|=+/5 ..isthema nitude of the gradientvector f 00 orowded (f values increasing rapicily).
changes /5 units for every one unit change in ,
this maximum direction.

N Also, note that the gradient vector appears

fob dicular to the | .
D, f (2 0) 1 ..is the directional derivative vaiue, f changes @ perpendicularto the leve] curves
only 1 unit for every one unit change in direction

from P to Q.



Gradient and relationship to level curves

Remember, the gradient vector is in the domain (Xy~p§ane). ' Here is how this looks in 3D...

M p

V/ s in the xy-plane in direction of
“ maximum rate of height change

Tangent lines

" o
2d < el £ 20 In the domain, if you ook at how the gradient
- g; %g vector crosses the level curves, they appear to
+ g =47 be perpendicular, and it can be shown that they
: ¥ 10 are perpendicular (derived in the separate
1+ . ? "’%‘a@% document on www.mrfelling.com)
! ’.; . %&u
B We can define tangent lines to the level curves
— . 4 Mg at the points of contact with the gradient vector.
0 1 P Sa, 37

If you add another input variable, the domain because 3D, but gradient and directional
derivative are defined in a similar way:

w=F(xy,z) VF m(Fx, F, FZ>
u={(a,b,c) D,F(x,y,z)=VF(x,9,z)+%

We can't draw a representation of the function anymore (would be 4 dimensional), but we can
draw the domain (now 3D): ;

# VF (X, Yo 20}

tangent plane

Now we have a level surface (blue surface in this diagram} which corresponds to the maroon
. level curves in the previous example for some particuiar value k where F' (x, v, z) =k



Gradient for f(x,y,z), level surfaces, tangent planes

Just as the gradient vector was perpendicular to the fevel curves
¢ VF (% Yo 20 before, now the gradient vector is perpendicular to the level
surfaces. Before, we defined tangent lines at the points of

tangent plane N . .
AngEntl intersection, here, we define tangent planes instead.

&

The equation of a tangent plane at point P(xo,Yo,Z0} can be shown fo be:

F (x=x,)+F,(y=3,)+F,(z-2,)=0

where the pariial derivatives are evaluated at the point.



14.7: Maximum and Minimum Values
Geometric meaning of local minimum, maximum, and saddle point

N local maximum .
! tocal maximum

saddle point
. A saddle point occurs when concavity is up

in one direction and down in the other, and

corresponds to an inflection point, but in 3D,

local minimum

-~ A local maximum {or minimum) occurs
when this is the highest {ot lowest) output -
value within a small local region.

i.ocal minimum, maximum, and saddie points occur at critical points

Critical points occur when
fi(%y)=0 and _fy(x,y) =

...which corresponds to:

v/ ={..£,)=(0,0)

Critical points




Ly gl ol

2nd Derivative Test -
Determining whether a critical point is a minimum, maximum, or saddle point:

Find f.(x.), £, (%), and f,(x»)

Hessian Determinant ;
For each critical point... - pol= fo
| CorTipute the Hessian Determinant: . D=f.f, ot
Dm: frx (x()’y()) . fw (x(!’yo)“[fw (xo»yo):[
D<0 ' D>0 =
~ ~ _ D=0 .
(%0:0) Su(X,7) <0 fo(%0:5)>0 inconclusive
i ddl, int So either graph or try various
hokciaeacl ke (xa,y ") (xo,y °) (x.y) pairs around the point to
is a local is a local see if min or max
maximum wminimum

Optimization without constraints

¢ Find all critical points
-e Find an expression for D

¢ Evaluate D at each critical point to determine what 1s happening in the output

Ex) Find and classify the critical points for 2 == xt 4yt —dxy+1

| 'ﬁg"%ﬂ —fyzo ¥ yzx2
'@y’:qj “1x=e ):]»)Hc

4\ 3)-4x = = ‘

wxx ‘*-—w =2 coeien }/mﬂ*‘i ar,

Uy x-) =2 o> (-1,

: X4 &=

= X7

Y =12z
:’ ) j' {"0'5‘_},,‘ C).(" D _/lwx 7 /(ré ey

A ' f‘f“f&)zlo)z«/é = “IL E ff(ZM‘f' A

=123 V*"N a(/n -
ek Arx = 120)= =122 M :ﬂ
cﬂmmm 4f V
=\28  way oF A
w20 .
cheok. e = 12D TTcal

7 A Jf imﬁﬂgwwm

Sl

L7095 bz ey (0]
«6?7 = - @ . /,ﬁxzyz_,fé

ot
stz
it

e



N Local minimum;
=yt 4. (bottom of & valley,
Z=Xx +y 439) %I output values are
Results... ¥ decreasing)

Saddle point at (0,0)
Local minimums at (1,1), (-1,-1)

Local minimum:
(bottom of & valley)

- Note that level curves

make an X' (x marks
the spot) on a contour
plot at a saddle point.

Optimization with a domain boundary constraint {absolute min and max)
Over the entire xy-plane domain
(without constraint)

Over just a portion of the domain
(with a boundary constraint)

absolute maximum

local minimum Ilocal minimum

local minimum [Ioeai minimum
& absolute minimum & absolute minitmum |

& absolute minimum

These local minimum points would

I we add a surrounding boundary in the domain and
aiso be the absolute minimum points

, reguire staying within in, then we must also check the
(if they were both equally negative). output vaiue on the surface for all points above this
This surface has no absolute boundary. The absolute min or max may occur at critical
maximum over the entire domain.

points or it may occur above the constraint boundary,

Procedure for finding absolute max and min:
» Find all local max, min and add them to a list of (x,y) pairs

o Graph the domain and express the edge of the domain as a serles of edge curves

« For each edge curve, determine its equation and substitute into f(x,y), then determine for
what (X,y) pairs on this edge wil! f(x,y) be either a min or max...add each (x,y) pair to the
list.

o Plug all of the (x,y) pairs on the list into f(x,y) to determine where the absolute min and max
occur,



Ex) #32. Find the absoiute maximum and minimum values of fon the set D

f(xy)=4x+6y—x* ~ 3 D={(x,9)|05x<4,0<y<5}
M o Find all local max, min and add them to a list of (x,y) pairs: * possible focations of
v absolute max, min -
fo=4-2x=0 ' ' xy)
J,=6-2y=0 . 2,3)
2x=4 2y=6
x=2 y=3

one critical point at (2,3)

use 2nd derivative test...

fu=2
Jy =0
-/:wm—z

D=(-2)(-2)~(0)' =4
S (2,3)is a loéal max or min, so it should be on the list

» Graph the domain and express the edge of the domain as a series of
edge curves:

possible lacations of

» For each edge curve, determine its equation and substitute into absolute max, min

f(x,y), then determine for what (X,y) pairs on this edge will f(x,y) be x.y)
either a min or max...add each (x,y) pair to the list: >
L1: 2,3)
. (0:3)
f(x,y)z“‘X"l" Gy—x - Y (ﬂig}
F(0,y)=6y-» (0,5}
This is a parabola opening down: 7,

X max will ocour when st derivative = ()
f,=6-2y=0 ¢

y=3
50 (0,3) should be on the list to check
min will ocour at efther y=0 or y=5 {must stay ¢
. in this part of the domain)

so just put both of these points on the list
{0,0) and {0,5)




o For each edge curve, determine its equation and substitute into possible locations of

absolute max, min

f(x,y), then determine for what (x,y} patrs on this edge will f(x,y) be (xy)
either a min or max...add each (x,y) pair to the list:

12 (273)

' (0.,3)

f(xy)=4x+6y-x" -y (0,0)

7(x,5)=4x+30-x" -5 (0,5)

f(x,5)=—x"+4x+5 ' - (2,5)

This is also a parabola opening down (4.5)
max wrll oceur when 1st derivative = 0

fi=-2x+4=0

x=2

s0 (2,5) should be on the list to check
min will occur at either x=0 or x=4 (must stay

in this part of the domain)
$0 just put both of these points on the list
. (0,5) and {4,5)

» For each edge c.u-rve. determine its equation and substitute into p;’;:ﬁ;ﬁ é":;‘;’:"rzl;’f

f(x,y), then determine for what (x,y) pairs on this edge will f(x,y) be (x,y)
either a min or max...add each (x,y) pair fo the list:
y L2 L3: (2!3)
= S (%y)=A4x+6y~x"~y* ((g’g))
£(47)=4(4)+6y (4 -5* (0.5)
x=4 f(4y)=6y-y (2.5)
x This is also a parabola opening down: (4.5)
0 14 max will ocour when 1st derivative = 0 “43) 1 .
y= £,=6-2y=0 $4.0)
y=3

so {4,3) should be on the list to check
min will ocour at either y=0 or y=8 {must stay

f
in this part of the domain) J
so just put both of these points on the list y
(4,0) and (4,5)

¢ For each edge curve, determine its equation and substitute into P sg:ﬁﬁéo;zﬁorg; f

f(x,y), then determine for what (x,y) pairs on this edge will f(x,y) be (xy)
either a min or max...add each (x,y) pair to the list:

. (2,3)
L4: 0.3)
S(x,y)=4x+6y—x"—y* (0.0)
S (%,0)=dx—2* (0,5)
(2,)

This is also a parabola opening down: (4.5)
X max will occur when 1st derivative = 0
y4.3)
fo=4-2x=0 (4 0)
x=2 (2,0)

50 {2,0) should be on the list to check

min will occur at either x=0 or x=4 {must stay

in this part of the domain)
s0 just put both of these points on the list
(0,0) and (4,0)



e Plug all of the (x,y) pairs on the list into f(x,y) to determine
where the absolute min and max occur:

possible {ocations of
absolute max, min

xy) | f(x,y)=4ax+6y-x"~y

23) | r23)=42)+6(3)-(2) -(3) =13

(0,3) 9

©,0) 0 A

(0,5) 5 absolute maximum of { =13 at (2,3)

(2,0) 4 absoiute minimum of f = 0 at (0,0) and (4,0)
4.5 5

4,3) 9

4,0) 0

{(2,0) 4

If you're thinking, "there must be a better way"...you're right
...stayed tuned: Method of Lagrange Multipliers

Optimization a geometric scenario
Ex) #40. Find the point on the plane x - y + z = 4 that is closest to the point (1,2,3).
‘Closest means minimum distance. 3D distance formula:
d= \/(xz ““xl)z ““(.Vz “yl)z ‘*‘(Zz “7'1)2
Distance from general point (x,y,zj to (1,2,3):
d = J(x-1) +(y-2) +(z-3)
But if point must be on the plane, then z = 4 —x -+ y:
N dm\/(xm-l)z—l-(ymZ)2 +(4-x+y-3)
' dm\sz-2x+1+y2»~4y+4+(l~x+y)(l-x+y)
d= \]xz ~2x+1+y* 4y +4+(1-x+y)(1-x+y)

d=\x"-2x+14+ 3 4y +4+]—x+p—x+5* —xp+ y—xp+ ¥’
:rl=z\/2’xz-sl-2y2 —2xp—4x—2y+6
We need to minimize d, but could choose to minimize d? so define new function f(x,y):

X, ) =25 42y* 2xy - dx 2y +6
y ’d

Now, just minimize this (without constraints)
F(x%,»)=2x*+2y* ~2xp—4x~2y+6  Now, just minimize this (without constraints)

f,=4x=2y~4=0 ..1o make sure it Is a min:
S, =4y-2x-2=0 Fu=4
4x-2y =4 ' Jo="2
~2x+4y =2 So =4
5 D=(4)(4)—(-2)" =12 s0 max or min
4 2 |4 1 0| 3 checking f., =4 >0 means concave up
[Wz 4 | 2] rref - 01| 4 Therefore, minimum distance occurs at (g,%)
v3"‘ X, Y= i
(54 33
one critical pointat | =, —1... 5y, {4) 11
' 3'3 on plane, z = 4—x+ y =4~ 3 + 357

5 411
8 intisat | —, —,—
o point is a (3 3 3)

5 Y. (4 Y. (1 .Y
The minimum distance is: dzJ(g.q) ...(.«5_.2) .;_(—g.m3) =1.1547




14.8: Lagrange Multipliers
Optimization with constraints using Method of Lagrange Multipliers

In the last section, we said that, if a function has a constraint in the domain, o establish a
function's absolute maximum or minimum we must find all local extrema but also find the possible
max and min values around all pieces of the constraint boundary. This can be very time
consuming, and huckily there is another way that is easier and also much more flexible, for
checking finding the max/min on the boundary. using the Method of Lagrange Mulitiplers.

Here is the idea; Suppose we have a function z= f (x, y) and we aiso have a
constraint g(x,y) =k (which represents staying on some curve in the domain),

in the domain, you could graph level curves for particular values of the output variable...
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...anhd as you mave along the constraint curve, there is some point at which you've reached the
maximum output value (here, that value is 10).

When youl are at this point of maximum output, the level curve and the constraint curve
are tangent to each other:
¥
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...and this means that the normal vectors for the curves at this point are pointing in the same ‘

{opposite) direction: ”1
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Geometric interpretation
Ex) Find the extreme values of the function f(x,y,z)=x" +2y°
subject to the constraint x* +3* =1 Result: max f=2 at (0,1) and (0,-1)
In the domain, the f funcfion has min =12t (1,0) and (-1,0)
level curves, and the constraintis a '
circle centered at the origin with
radius=1. N | This is what is happening In 3D...

max
(0,-1,2)

X242y =1

The constraint 'grazes’ two level S—
curves, the max at = 2, and the min “
atf=1.

Optimization with multiple constraints

If you took brief calculus, you saw a variation on this procedure which used Iambcfa and partial
derivatives (a special case which we had to use because we didn't know about gradients), but the

procedure as described here is more intuitive and generalized.

In fact, you can use it to optimize a function subject to multiple constraints. Each constram
gets it's own Lagrange Muitiplier. If we have two constraints, g and h, we use:

Vf(x,3,2)=AVg(x,y,z)+u V&l(x, ¥, z)




These normal vectors are also the gradients of the curves...
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...and these gradients are parallel, meaning the one is a scalar multiple of the other. In other
words, there exists a scalar, A , for which this is true:

Vf=AVg

(at the minimum or maximum point)

This is equally true if we are at a minimum output value. The scalar lambda’ 1 is called a
Lagrange Multiplier. '

Optimization with constraints using Method of Lagrange Multipliers

We can use this fact{o locate the max or min values of a function subject to a constraint, and this
can be extended to any number of input variables:

Method of Lagrange Multipliers:
~ Tofind the max or min of f(x,¥,z) subject to the constraint g(x,y,z)=k

(if extreme values exist, and Vg = 0 anywhere on g(x,y,z) = k)
o Find all values of x, y,z, and A such that

Vf(x,9,2)=AVg{(x,y,z)
o Evaluate all the points (x,y,2) found to identify which is the max and which the min.

Ex) Find the extreme values of the function F(x, y,?) = X7 + 2y
subject to the constraint x” +y* =1 > 9(x) =% +j
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Ex} F‘md the maximum and minimum volumes of a rectangular box whose surface area is
1500 em? and whose total edge length is 200 cm.
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