Calc3 — Lesson Notes - Chapter 14: Partial Derivatives

14.1: Functions of Several Variables
Multivariable Functions

2D functions 3D vector functions 3D multivariable functions
One numerical value in the One numerical value in the Two numerical values (x,y) in the
domain maps to one domain (parameter f) maps domain map to one numerical
numerical value in the range to a vector, r(t) in the range output value in the range
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All of this could extend to any number of input variables, but always one output
variable (if you need more than one output variable, then use vector functions).

For example, atmospheric pressure P could be a function of X, v, z,
which are spatial dimensions, P = f(x,y,2):

Wind might then be caused by a difference in

pressure between any two points...wind flowing

‘ P f 2 2 5) =14.6 [by from higher pressure to lower pressure, with
in’ amount of wind proportional to difference in

pressure in a specific direction. (Need a
derivative in a direction, covered later in this
chapter.)

P, = £(4,6,2)=17.8 13%22

X

Now, the 3D space is the domain and pressure, P is a numerical

variable with values (but no way to show it on this graph, except as
numbers).



Sketching multivariable functions

Impractical to sketch surfaces by hand, can use software:  https://www.geogebra.org/3d?lang=en

For planes, can use intercepts to sketch...

Ex) Sketch z= f(x,y)=6-3x—-2y

Domain/range of multivariable functions

Just as with single variable functions, the domain of a multivariable functions represents the set of all input
values for which there is a single output value defined and the range is the set of all output values produced.

Things that can limit the domain:

¢ The function itself might state a domain (whoever created it specifies where it can be used.)
o If the function is defined algebraically, anything that would can an undefined condition must
be excluded:

« Dividing by zero

« Even roots of negative numbers

« | ogarithms of zero or negative numbers
o [f the function is defined graphically in 3D by a surface, then the domain is the part of the x-y

plane over which the surface exists.

« |fthe function is modeling a physical phenomenon, values which make no sense must be
excluded (negative liters of volume, negative time, shapes with negative dimensions, etc.)

Ex) Find the domain and range of A(x,y)=4x"+y’



Level curves, level surfaces, contour maps
For a function z = f(x,y) we can find a level curve by setting z equal to a constant
and tracing out the path in the (x,y) domain which produces this z value.

For a function w = f(x,y,z) we can find a level surface by setting w equal to a
constant and highlight the surface of all points in the (x,y,z) domain which produces
this w value.

A set of level curves or level surfaces is called a contour map.

Level curves Level surface

12
12
12
" 4D
P=f(x,.z)
(pressure)

Note that how closely spaced the level curves are is determined by how rapidly the
output value is changing...fast change = close curve spacing:

In this area, level curves spacing is very ]f" tnis areaf,..lgvel FUF\I‘;ES SpaCilng is
close, so height is changing very rapidly a"t_dT"! |5° ?'?m Is changing less
(more 'steep) rapidly (less 'steep')

Ex) Draw a contour map showing several curves for f (x, y) =x - y



14.2: Limits and Continuity of multivariable functions

Limits of Multivariable Functions
For single-variable functions
We've studied the idea of a limit in brief calculus and AP Calc BC:

If, as x approaches a value c in the domain, f(x) approaches value L in the range, regardless of the
direction of approach, then we say the limit of f(x) at x=c is L.

i
As we approach x=3 y = 1x) As we approach x=3
from the left side, y from the right side, y
approaches 7, so we say approaches 7, so we say
the left-handed limit -~ the right-handed limit
exists and is 7 (the exists and is 7 (the
number being x | y=fx) : oy X ¥z number being
approached). 29 | 6.87 — 3 — 33 | 812 approached).
295 | 6.92 x=3 x—o3 3.16 | 7.45
lim f(x)=7 2.99 | 6.998 3.01 | 7.002 lim f(x)="7
x—3 x—3"

Because the same y value (7) is being approached regardless of
direction, we can say the limit as x approaches 3 is 7 (without
specifying a direction): li _

im Fix)=7

x—3 f( )

Note: it doesn't matter what happens at exactly x=3, the limit is about the value being approached.

For multivariable functions

If, as (x,y) approaches a point (a,b) in the domain, f(x,y) approaches value L in the range, regardiess
of the direction of approach, then we say the limit of f(x,y) at x=cis L.

lim )f(x,y):L

(x.y)—(a,b

Ways to picture this:

f(x.y)

y domain
If you approach (a,b) in the domain, from For every point (a,b) in the domain there is a value L in the
any direction, the same z limit value is range and for every =& region a distance around L there
approached. exists a circle of radius & such that

0< ,\/(Jc:—a)2 +(y—i‘))2 <& and |f(x,y)—L‘ <&



Limits of Multivariable Functions

Imagine you have two functions and some values for each are given in the following tables:

Values of f(x,) Values of g(x,y)
y 3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3

X X

3 | 73| 74|75 |75 |74 |74 |73 3 |73 74|45]|05]14] 34| 63
-2 74175175 |76 |75 7.5 7.4 -2 34 ) 56 |55 |16 ]| 25| 35| 54
-1 75 7.6 7 | 7.7 Tal 7.6 T -1 5 24 |67 B, § 17 26 | 35
0 Fis 7.7 78| 7.8 7 7.6 7.6 0 -05] -14| 78 |68 |-57]|-46 | -26
1 7.6 7.8 781 79 il | 7.7 76 1 -36 |-45 |79 |59 |[-7.7 |-7.7 |-7.6
2 Tl 7.9 79| 78] 7.8 76 2 -7.7)-7.8 79 |-611]-32|-53
3 T.9 8.0 8.1 8.0 7.9 8.0 7.8 3 -59]-23 81 |-30[-29] 1.0 2.8
4 8.1 8.2 831 82 8.1 8.1 7.9 4 3.1 5.6 83| 22 3 4.1 5.9

Both of these functions are undefined at (2, -7) but for the limit, that doesn't matter. Instead,
we look at what output value is being approached as we approach from different directions.

For f(x,y) the output values seem to
approach 8.0 as the limit, regardless of
direction so we can say:

lim )f(x,y)zS

(x.y)—(2,-1

For g(x,y) the output values seem to approach
different values depending upon direction so we
must say the limit doesn't not exist:

lim g(x,y) = DNE

(r.0)>(2-1)

Computing Limits of Multivariable Functions

Can we find such limits without resorting to listing many values? Yes...we try approaching from
directions which are easy to compute (along the x- or y-axes, along the family of lines y=mx, along
parabolas, etc.

It is easier to show that the limit doesn't exist...if we find even one counter-example where different
values are being approached, then the whole function does not have a limit at that domain value.

To state a limit exists, in practice, we test a variety of cases and if they all approach the same value

we can be reasonably confident the limit exists, but to be certain we must use the Squeeze

Theorem and find two functions which we can show are above and below the actual value, then
show that these functions have the same limit.

This is best to see through examples...

Ex) Find the limits:

2 2

x -y 4

m ———-
(>4 x* + 37

* Try plugging in (if well
often works)

 If plugging in resu)
zero you can try:
« factoring

We can't use our tactics for single variable
functions, because the function can be well-
behaved from one direction but discontinuous

from other directions.

But we do know that
polynomials and rational
functions are continuous

over their domains.



Computing Limits of Multivariable Functions

Ex) Find the limits: If we are evaluating a limit at a value not in the domain of the function or for any other
reason are not sure about the continuity of the function at this domain location, we need
x2 _ yZ to switch tactics: Instead, we evaluate along different functional paths by defining
P relationships between the function variables to establish a path, then evaluate the limits

im _
(x,)-(0,0) x% + y2 along many different paths.

We try the following paths, in order of difficulty:

e The x and y-axes: y=0,x=0.
e All lines of form: y =mx + b.
¢ All parabolic paths of form: y = ax?+bx+c.

If a limit does not exist, usually by the time we get through parabolic paths, one of these
limit will be DNE...as soon as we encounter one DNE, we declare the whole limit DNE.

If all the limits through parabolas exist, then we still haven't shown conclusively that the
limit exists along all paths, so we switch tactics again and use The Squeeze Theorem for
Multivariable Functions (will show in later example).

Ex) Find the limits:

91 -2
iy F=F
(69)-(0.0) x“ + y

Ex) Find the limit:  lim —>>
(x.3)>(0,0) x* + y



2
Ex Eindithelindie T -~
(x.2)(0.0) x* + y2

At this point, we believe the limit may exist but haven't shown this conclusively, so we switch tactics
to using the Squeeze Theorem for Multivariable Functions.

Consider our function: 3x2y
x' 4y
3x’y x°
This can written as two factors: . = BogP 3¥ . butthe left factor will always be less than 1:
Y Y . ...because if y =0this=1,andifyis

~<1  anything else, the denominator
increase. As y approaches infinity,
this factor approaches zero.

So depending upon the value of y, this factor will always be somewhere between 0 and 1. That means...

X4y

2
X
0)3y< 3y<(1)3
(Ops5 sty
3xy
0< <3y if y>0
e ify
2
3y=< fjx yz <0 if y<0
x“+y
. . 3x2[y|
To accomodate both of these cases, we can use an absolute value like this: 0= ;5:;; = 3|y|

Now for the Squeeze Theorem: if we evaluate the limits on the ends and they evaluate to the same number, then the limit in the middle
is also the same value:

3x?|y| .
li < 1 e < 1m
(x.)-»(0.,0) (x.)2(0,0) x +y (x.3)-»(0.0)

30y

2
o< tim X1

< m : =50
(x.)>(0.0) x* + y

) 3x° |y
Therefore, our limit's value is zero (for any path): lim 77||2 =
(x.3)=(0.0) x* + y



14.3: Partial Derivatives
Partial Derivatives

y=/1(x)

A

X
-2-17123

Derivative = slope of line What would derivative mean for a
tangent to curve surface?

z=f (%) 2= /(%)

If we hold x constant (on plane x=6) If we hold y constant (on plane y=8)
derivative could equal slope of tangent derivative could equal slope of tangent
line of z=f(y) curve. line of z=f(x) curve.

These 'directional' derivatives are called partial derivatives.

z=f(xy)

"Differentiate f with respecttoy  "Differentiate f with respect to x
while treating x as a constant.” while treating y as a constant."



2

Ex) z=f(x,y)=x"+2y" -3xy

fi(xy)=

fi(xy)=

/.(5,5)
1,(5.5)

Tryit: Find f,. f,. f,(2.-1). £,(-2.3)
If f(x,y)=2x"-3y+x’



Higher order partial derivatives

f.(x,y) and f,(x,y) are known as 'first-order’ partial derivatives.

But these partial derivatives are also function of x and y, so they form
their own 'surfaces'. We could take partial derivatives of these, which
are called 'second-order’ partial derivatives:

Starting with /. (x-7) Starting with /» (%:)

A A

)= ;ygjc Bizx Sn(%:7)= ;2; aiay
[ (%,3) ;;;

Interpretation of 2nd partial derivatives

[, is the 2nd derivative
with x always as the variable

and y constant (on a plane) s 30 8 slope values for change
“yscvs BNl in z as X is changed

This represents how quickly the

first derivative is changing as x is
increased, meaning how quickly
the 'slope’ is changing.

Therefore fn represents the
concavity of the trace of the curve
on the constant y-plane at this
point.

As x increases, slope decreases, so fH <0
and surface is concave down in the x direction.

f v is the 2nd derivative
with x always as the variable

and geanetant (o E pEng slope values for change

in z as y is changed

This represents how quickly the

first derivative is changing as y is
increased, meaning how quickly

the 'slope’ is changing.

Therefore fyy represents the
concavity of the trace of the curve
on the constant x-plane at this
point.

As y increases, slope decreases,
0 f, <0 andsurface is
concave down in the y direction here.

As y increases, slope increase,
£, >0 and surface is
concave up in the y direction here.



Interpretation of 2nd partial derivatives

fyx represents how quickly the

This represents how quickly the
first derivative in the y direction
is changing if we move in the x
direction.

I've never seen a stated official
meaning for the mixed derivative,
but to me it seems like it
represents how rapidly the
surface is 'twisting’ in the
region of a given point.

S ®—0.5 per unit in x

Surface is twisting slowly as we
move in x direction.

{1

fxy represents how quickly the

This represents how quickly the
first derivative in the x direction
is changing if we move in the y
direction.

23— 3zy?

| believe this represents rate of
twisting’, but now as we move
in the y direction.

) - P
0 1/2

1 -1
Sy ®—0.5 per unit in y

Surface is twisting slowly as we
move in y direction.

Clairaut's Theorem

Suppose fis defined on a disk D that contains the point (a,b).
If the functions £, and £, are both continuous on D, then

fy(a,b)= 1, (a,b)

If our interpretations of mixed derivative are correct, this means that in a small region the
rate of twisting in x and y directions is always the same (which makes sense because it is a
smooth surface).



EX)Find fos> frys Sops Soe for f(%.¥)=2x" -3y +x’

Ex)Find f,, f,» f. for f(x,y,z)=€"Inz

10. A contour map is given for a function f. Use it to estimate

£(2, 1) and £(2, 1),
TV T Y
0 /
| B ,///,/

A
///:2
%
////12

Y]

\\\u =
o/
N
\

)
=3
\\
ANA
N
\
/

'-""\
<
\
A
P
Y




4. The wave heights / in the open sea depend on the speed v |
of the wind and the length of time r that the wind has been
blowing at that speed. Values of the function h = f(v. 1) are
recorded in feet in the following table.

Duration (hours)

x| 8 10 | 15 | 20 | 30 | 40 | 50
10 2 2 2 2 2 2 2
Z| 15 4 4 5 5 5 5 5
E ) i
=| 20 5 7 8 8§ | 9 9 9
i ) M— | —
&1 30 o | 13 16| 17! 18] 19/ 19
- _
= |
S| 40 | 14 | 21 25 | 28 | 31 33 | 33
so0 | 19| 20 | 36 | 40 | 45 | 48 | 50
i _—
60 | 24 ; 37 | 47 | 54 | 62 | 67 | 9

(a) What are the meanings of the partial derivatives dh/dv
and oh/ar?

(b) Estimate the values of £,(40, 15) and £,(40, 15). What are
the practical interpretations of these values?

(¢) What appears to be the value of the following limit?

ah

1
== gt

X
Ex) Find the first partial derivatives of f(x,y) — ICOS (t2 )dt

¥



14.4: Tangent Planes, Linear Approximations, and Differentials
Tangent plane to a surface

Starting with an equation of a plane:
a(x—x,)+b(y—y,)+c(z-z,)=0

(the constant on the right is set by the point)
ax+by +cz—(ax, +by, +cz,) =0
ax+by+cz =(ax0 +by, +cz0)
Divide by ¢ and solve for z —z,:

b

c

ax+by+cz=d

2=, =—§(x—x0)— (y=n)

If we stay on plane y=y:

z—zy=—2(x-%,)
C

z—z,=m, (x—xo) the multiplier is a slope in the x-direction for point-slope form line
If we make this slope the partial derivative, then this line is tangent to curve at the point:
z—z,=f, (xo’J”o)(x_xo)

If we so the same for the other term on plane x=xp we get:

Z—z, :-f:-c(xo’yn)(x_xO)Jrfy(xﬂ’yO)(y_y“)

Equation of tangent plane to surface z = f(x,y) at point (xo,yo, zo)

www.geogebra.org/m/nKraSHVX

Ex) Find the tangent plane to z =2x” + y” at (1, 1, 3).



Differentials

3D
m secant line g _ (@a+Ax,b+ Ay, fla+ Ax,b+ Ay))
surface z = f(x, y) i e
tangent line . T
AR Az
Ay dz

(@b, fla. b)) __

(@, b, 0}

Ay=dy y
tangent plane
z— fla,b) = [ {a,b)lx —a)+ f (a, b){y—b)

A differential is a very small (infinitesimal) change in a direction:

A—y:slope of secant line z=f(xy)=f(ab)+ f(xy)(x—a)+ [, (xy)(y-b)
o (= 7(@h) = £ (e 7)(x=a) + 1, (x2) (r=b)
E:-f,(x) = slope of tangent line dz = fx(x,y)a’x+fy (x,y)aj)
dy = f'(x)dx G e B
ox oy

Difference between dz and Az

Remember in brief calculus when we talked about the
difference between 'average speed' and 'instantaneous
tangent line Speedi?

secant line

1(x)

5, —8 _As
avg Speed:#:_
,—1, At

(Use 'algebra’ for 'average')

f(a)

I\\f

. S, =
instantaneous speed = lim 22— = ' (1)
A0 [ —f,

(Use 'derivative' for the instantaneous speed at t;)
Similarly, dz is calculated using derivatives: dz = f, (x,y)dx+ f, (x,y)dy

But Az is calculated using algebra: Az = f(x,,¥,)— f(x,,,)

Ex) If f(x,y) =x* +3xy —y2 if x changes from 2 to 2.05 and y changes from 3 to 2.96

a) Find dz b) Find Az



Linear Approximation www.geogebra.org/m/prqajfgb

Zooming in

2x*+y*'-z=0

4x+2y—z=3

In the vicinity of the point of tangency, the tangent plane is a good
approximation of the surface.

In 2-D, if we are not too far away from x, then the tangent line is a good approximation to
the curve f(x):

For the secant line (on the actual curve):

(y_ya) = Mecam (x_xa)

secant line

tangent i PR
i) I angent line (f(x)—f(a)) — Ax( A)‘
y
v £ (x)=1(a)+ L(x-a)
=) : or the tangent line (with slope which is the limit as
7 i dx E Ehar:rgl;etinr?ap:alroacgle;hzelrop= ::12 dl:erivta}:i\.'tle): '
// : i (y_ya):mmngem(x_xa)
1
s (f(x)-£()) = fim 2 (x-a)
N o’ .
Ax (/(x)-1(a))=1"(x)(x~a)
f(x)=7(a)+ s (x)(x-a)

Then the f(x) using the tangent line is an approximation of the actual f(x) on the curve:
Flthiage ® ) /()= f(a)+ ' (x)(x-a)

Similarly, in 3D we can approximate a surface using the tangent plane.

Equation of tangent plane to surface z = f(x,y) at point (xu,yu, zo) :
z=z,=1. (xnsyn)(xfxu)+f; (xa’yn}(yfyn)
z—f(a,b)= f.(a.b)(x—a)+ f, (a,b)(y—b)

z=f(x,y)= f(ab)+ f.(ab){(x—a)+f, (a,b)(y—b)

{a+Ax,b+ Ay, fla+ Ax, b+ Ay))
surface z = f(x, y)

(@, b, fla, b)) _|

\
(a, b,0) \

Ay=dy
tangent plane
z— fla,b)= f,la,b)x—a)+ f,(a,b)(y—b)




Linear Approximation

Examples: Find the linearization of the surface, then use it to approximate.

2D

approximate f(5.5) for f(x)=+/x
f(x)=f(a)+ 1" (x)(x~-a)

Examples: Find the linearization of the surface, then use it to approximate.

3D

approximate f(2,1.5) for f(x,y)=02x*+0.1y’
f(x.y)=~ f(ab)+ f.(a,b)(x—a)+ f,(a,b)(y—b)

3

25

(4.2)

[ approx
(5.5, 2.38) y-value

(5.5,2.35) actual
2 y-value
156
=
0.8
] 0.5 1 1.5 2 25 3 as 4 4.5 5 5I5 -]
chosen actual
convenient Svalie
value
x=4 x=55
fx.y)




14.5: The Chain Rule
Chain rule for single variable functions
Remember the Chain Rule from brief calculus? gy N dy du
dx  du dx
(Almost like 'unit analysis' / cancelation)

It enabled things like this:
Y= e Find 4
dx

defineu =3x" theny=¢"

o =6x L ¢ =&
dx du
it 2 0
dx du dx
= (6x)

...which extended all our derivative shortcuts

Chain rule for multivariable functions

For multivariable functions, the situation is a little more complex, but still based on this 'unit
analysis' idea of multiplying derivatives to get 'cancelation’. There are two main 'cases".

Case 1: When z is a function of two variables x and y, and these two variables each functions of

the same single variable, t: z = f(x’y) = f(x(t),y(t)) Could draw this tree to help
remember:
& _ocds ooy &z &
dt oxdt oydt o/ N
X
dx ydy
dz ) . dt | dr
Ex) Find — whent=0,if z=x"y+3xy t f
dt Fi= sin(2t)

y=cos(1)



Chain rule for multivariable functions
Case 2: When z is a function of two variables x and y, and these two variables are each functions

of the same two variables, sand t: z= f(x,y)= f(x(s,t),y(s,t))
Could draw this tree to help

&> Stk 5= ay remember:
R & Z @&
Os oOxds Oyos el =
éx/ \5}
0z 0Ozox Oz dy
o ma 2 NE 22
0s ot Os Ot
) oz oz 2 P /\ /\
Ex) Find a—anda when t=0,if z=x"y+3xy S s {
s x =e’ sin(2¢)
y=s’cos(r)

This idea is extendible for any number of first or second level variables.
t
i 6”whenr-2 s—1t-0ifu:x4 +y*z’ =R
EX) Find g ey =k W=l y y y — rsze_“
z =r’ssin (t)

ou -
S ou_oudx oudy ouie

ISR, + a—n
: A x 5 B z 2 5 Os dxds Oyds 0z os

Tree for this would look like:




Implicit Differentiation

dy
We first encountered implicit differentiation in brief calculus: Find &y ¥ +xy+y3 =5
X

When it wasn't easy or possible to first solve for y, we just took derivatives in place, using the
chain rule to multiply by a dy/dx for terms where the variable wasn't x:

a7k Lol 2012
(product rule) "'-

2 ]+(x)—[y]+(y)—[x1+—[y 1=21s]
E["B]+(x)5[y]+(y)a[x]+a[y’]:E[S]
3x2+x[lij ()+3y2dy 0
%(“3}’2):-3362-3)

dy -3x’-y

dx  x+3)°

Now we can extend this more generally. If an equation written as F(x,y) =0 defines y implicitly
as a function of x, then we can apply the Chain Rule to both sides:

8_Fﬂ+6_FQ=0 and since E:1
ox dx  dy dx
oF
)+ L _g d__ox
& Y& d OF F,
ay

Find 2 it X4xy+y =5
dx

F=x4+xy+y’-5
F =3x"+y

_ 2
F,=x+3y

dy F, __3x2+y

2
dx 7 x+3y

Not only is this easier, we can extend it for higher numbeéz of variables.
For z= f(x,y,z), express as I (x,y,z) =0 Then for by the Chain Rule :

oF ox OF oy OF oz
e e Also, §=1 and @=0
Ox Ox Oy ox 0z Ox ox ox
(because x and y are orthogonal
oF OF oz input variables)
—+——=0 P
o oz ox Similarly, for —:
%
oF or
o __ax K __ & F
o OF F » OF F
oz oz




Higher order partial derivatives (not going overin class, see ex 7 in book and notes)
We can use these ideas to take derivatives of derivatives (higher-order derivatives):

oz 0’z
Exyrind o and o if z= f(x,y) is some function with continuous 2nd partial derivatives and
T {
s ) 0z 0z Ox azay x(?‘,s)=r2 +32, y(p-,_g)zzrs
1st derivative by Chain Rule: —=——+——

"o Bxar oy or

0z 0Oz
a = a(zf')ﬁ-g(z&')

Now taking the 2nd derivative:

&z o

a 3r|: (2r )+_(2S)]

-2 S0 2 Se)

Each term requires product rule:

(ZaeorerlZ){zaererdf3]
=2Z+(2,)@+(;mmzs)a,[_@}]

But these terms are not simple 2nd derivatives.. they require using Chain Rule:
]2zl lel-teng
Or|ox| Ox| Ox |or ay_ax or
ola]_olalex, o]y _
or|dy| ox|oy|or oy|oy|or 3x6y

Substitution these back in:
s ] + (25)[

_2_ +(2r )(

o % (2s)

2% (2)

2 2 2
=2%+4r2 J f+4rs i yars 22 +4sza—f
Ox ox Oyox OxOy
— = same by Clairaut's Theorem
9’z Oz ,0°z o’ o’

AL RN P AL TRy

o’  ox ox’ Ox0y oy’




14.6: Directional Derivatives, Gradient Vector

Note: These lesson notes are presented in the order that makes it easiest to understand
and use, but is not the order in which things are usually defined, derived, and proved.

No derivations will be included here, but there is a separate PDF showing all the derivations
on www.mrfelling.com if you are interested in the details.

Definition of the Gradient Vector

For z= f(x,y) the Gradient Vector is defined to be:

Vf (x.3)={£.(%5), £, (x5))

_ AV (53)={f.(x¥), £, (%))

this symbol is

called 'del This is understood to always mean a vector, so an arrow is

implied and typically not included over the Y/ .

Geometric meaning of the Gradient Vector

The gradient vector is in the domain (x-y) plane and

points in the direction of fastest change in z at the
given point.

z=f(x,y)=%x2+y
t t directi
/(‘9- eepest direction v/ = <%x, 1>

¥ At (xy) = (2,3)

2= £(23)=4(2)" +(3) =4

Vf =(L1)



Directional Derivatives

We know that the derivative in the x and y directions are given by the partial
derivatives, f, and f,.

What about derivatives in an arbitrary direction? These are called directional derivatives.

First, we need to define a direction, and this is Then it can be shown that the derivative in the
done in the domain (x,y-plane) because direction arbitrary direction is the dot product of the
doesn't depend upon what the output value is. gradient vector with the unit direction vector:

We define a unit direction vector:

D, f(x,y)=Vf(x,y)ud

unit direction vector, 7 = {a,b)

You can think of this as the gradient representing
the derivative in the direction where it is highest
(fastest change in z), and by taking the dot product
we are finding the 'projection’ of this gradient vector
in a given direction (the amount of the maximum
derivative which is in this direction). .

In fact, if you use the magnitude and angle representation of the dot product:
D, f(x,y)=Vf(x,y) U
D, f(x,y)= ‘Vf(x,y) ‘ ’-27[ cos@

cos @ is maximum (1) when & =0 which occurs when Tis in the direction of vf
and is minimum (0) when the vectors are perpendicular.

unit direction vector, 77 — {a,b)

Note:. Very important!

The direction vector must be a unit vector!



In higher dimensions

These ideas are all extendable for a higher number of input variables.

wa=f(x,y,z)
Vf(x,y,z):(j; (x,¥.2), £,(x.,¥.2), ﬁ(x,y,z)}

D,f(%3,2)=Vf (x,3,2) &

...except that now the domain is 3D, so the direction vector would be a vector in R3

Gradient and relationship to level curves

A great example from the book to illustrate: [f f[x,y) = xe”

Find the rate of change of f at the point P(2,0) in the direction from Pto Q(1/2, 2).
In what direction does f have the maximum rate of change? What is this maximum rate of change?

Let's look at these results and their relationship to the level curves...

— 3 i o
PO = (—5,2> ...Is the direction vector between the points. 2t ffz 123
=16
t213
- /34 1=10
U= <__,_> ..Is direction normalized to unit vector length. 1 T I=8
55 f=6
.0)
f=4.5
Vf = <I,2 ...is gradient vector which shows direction of | X p X
f=2 -

fastest change in output values.
Notice how the gradient points in a way
where the level curves get most rapidly

|V/]=+/5 _is the magnitude of the gradient vectorf 1 0c" e (f values increasing rapidly).
changes /5 units for every one unit change in
this maximum direction. )
Also, note that the gradient vector appears

; — — to be perpendicular to the level curves.
D, f(2,0)=1..Is the directional derivative value, f changes perp
only 1 unit for every one unit change in direction
from P to Q.



Gradient and relationship to level curves

Remember, the gradient vector is in the domain (xy-plane). Here is how this looks in 3D...

ik A RS
TNt

- i =
-
o

L
[

Vf is in the xy-plane in direction of
© maximum rate of height change

In the domain, if you look at how the gradient
vector crosses the level curves, they appear to
be perpendicular, and it can be shown that they
are perpendicular (derived in the separate
document on www.mrfelling.com)

We can define tangent lines to the level curves
at the points of contact with the gradient vector.

0 ! t t \i r
1 P ., 37

Gradient for f(x,y,z), level surfaces, tangent planes

If you add another input variable, the domain because 3D, but gradient and directional
derivative are defined in a similar way:

w=F(xz)  VF=(F,F,F,)

U= (a,b,c) D,F(x,y,z)=VF(x,y,z) U

We can't draw a representation of the function anymore (would be 4 dimensional), but we can
draw the domain (now 3D):

AVF (v voezy)

tangent plane

T —

Now we have a level surface (blue surface in this diagram) which corresponds fo the maroon
level curves in the previous example for some particular value k where F(x,y, z) =k



Gradient for f(x,y,z), level surfaces, tangent planes

Just as the gradient vector was perpendicular to the level curves
A VF(xg.¥0.20) before, now the gradient vector is perpendicular to the level

4 surfaces. Before, we defined tangent lines at the points of
intersection, here, we define tangent planes instead.

tangent plane

The equation of a tangent plane at point P(xy,¥s,20) can be shown to be:

F (x—x,)+F,(y-y,)+F,(z2—2,)=0

where the partial derivatives are evaluated at the point.



14.7: Maximum and Minimum Values
Geometric meaning of local minimum, maximum, and saddle point

local maximum

local maximum

saddle point
A saddle point occurs when concavity is up
in one direction and down in the other, and
corresponds to an inflection point, but in 3D.

local minimum

A local maximum (or minimum) occurs
when this is the highest (or lowest) output
value within a small local region.

Local minimum, maximum, and saddle points occur at critical points

Critical points occur when
j;(x,y)z[) and fy(x,y)z()

...which corresponds to:

Vf =(£.. 1,)=(0. 0)

Critical points



2nd Derivative Test
Determining whether a critical point is a minimum, maximum, or saddle point:

Find f.(x.»). f,(x.y), and f,(x,y)

Hessian Determinant :

For each critical point... plf= Jo
Compute the Hessian Determinant e i
ompute the ressian beterminant: , D= fx.xfyy —fxyfvz
’szn (xu’yu) .fw(xmyu)_lif,g»(xmyo):l
D <0 D>0 =
~ ~ D=0
(%0 20) S (%0534) <0 S (%9:%5)> 0 inconclusive
is a saddle point So either graph or try various
p (x“’y“) (xo,yo) (x,y) pairs around the point to
is a local is a local see if min or max
maximum minimum

Optimization without constraints

« Find all critical points
e Find an expression for D
» Evaluate D at each critical point to determine what is happening in the output

Ex) Find and classify the critical points for z = x* + y* —4xy +1



Local minimum:

— 4 4 (bottom of a valley,
FEx Aty 4xy +1 output values are
Results... 3 decreasing)

Saddle point at (0,0)
Local minimums at (1,1), (-1,-1)

Local minimum:
(bottom of a valley)

Note that level curves
make an 'x' (x marks
the spot) on a contour
plot at a saddle point.

Optimization with a domain boundary constraint (absolute min and max)

Over the entire xy-plane domain Qver just a portion of the domain
(without constraint) (with a boundary constraint)

absolute maximum

A\ B)

local minimum local minimum local minimum Ilocal minimum
& absolute minimum & absolute minimum & absolute minimum
These local minimum points would If we add a surrounding boundary in the domain and
also be the absolute minimum points require staying within in, then we must also check the

(if they were both equally negative).
This surface has no absolute
maximum over the entire domain.

output value on the surface for all points above this
boundary. The absolute min or max may occur at critical
points or it may occur above the constraint boundary.

Procedure for finding absolute max and min:
¢ Find all local max, min and add them to a list of (x,y) pairs

e Graph the domain and express the edge of the domain as a series of edge curves

« For each edge curve, determine its equation and substitute into f(x,y), then determine for
what (X,y) pairs on this edge will f(x,y) be either a min or max...add each (x,y) pair to the
list.

e Plug all of the (x,y) pairs on the list into f(x,y) to determine where the absolute min and max
occeur.



Ex) #32. Find the absolute maximum and minimum values of fon the set D

f(xy)=4x+6y—x"—y’ D={(xy)|0<x<4,0<y<5}
e Find all local max, min and add them to a list of (x,y) pairs: possible locations of
absolute max, min

f.=4-2x=0 (x.y)
f,=6-2y=0 (2,3)

2x =4 2y=6

x=2 y=3

one critical point at (2,3)
use 2nd derivative test...

fu=2
£y =0
=-2

»

D=(-2)(-2)-(0) =4
(2,3) is a local max or min, so it should be on the list

e Graph the domain and express the edge of the domain as a series of
edge curves:

0 L4 4
y=0
oo i : ; ; possible locations of
e For each edge curve, determine its equation and substitute into absOlils fHak, mif
f(x,y), then determine for what (x,y) pairs on this edge will f(x,y) be (x,y)
either a min or max...add each (x,y) pair to the list:
(2,3)
L1z
2 2 (0’3)
f(x,y):4x+6y—x = (010)
/(0,y)=6y—y* (0,5)
This is a parabola opening down: f
" max will accur when 1st derivative = 0
f,=6-2y=0 4
y=3
so (0,3) should be on the list to check
min will occur at either y=0 or y=5 (must stay f
in this part of the domain)
so just put both of these points on the list ;

(0,0) and (0,5)



. ; ; § possible locations of
« For each edge curve, determine its equation and substitute into . U

f(x,y), then determine for what (x,y) pairs on this edge will f(x,y) be (x.y)
either a min or max...add each (x,y) pair to the list:

5 (2.3)

L2: 0.3)

f(x,y)=4x+6y—x2—y2 (0:0)

J(x,5)=4x+30-x* -5 (0,5)

f(x5)=-x*+4x+5 (2,5)

f
This is also a parabola opening down: (4.5)
max will occur when 1st derivative = 0
f.=-2x+4=0 %
x=2

so (2,5) should be on the list to check
min will occur at either x=0 or x=4 (must stay

f
in this part of the domain) X
so just put both of these points on the list 2
(0,5) and (4,5)

. Yoo ; 5 ; possible locations of
For each edge curve, determine its gquatlon‘ and subs:tltute into I A ———"
f(x,y), then determine for what (x,y) pairs on this edge will f(x,y) be

(x.y)
either a min or max...add each (x,y) pair to the list:

13- 23)
f(x,y):4x+6y—x2-y2 E{g‘:;))
f(4.y)= 4(4)+’6y-(4)' = (0,5)
f(4,y)=6y-y (2,5)
o y ; f (4,5)

This is also a parabola opening down: ¥) :
max will occur when 1st derivative = 0 (4.3)
f,=6-2y=0 £.0)

y=3
so (4,3) should be on the list to check
min will occur at either y=0 or y=5 (must stay f

in this part of the domain)

)
so just put both of these points on the list ¥
(4,0) and (4,5)

» For each edge curve, determine its equation and substitute into pggifob!ﬁ;og:t;ogr? f
f(x,y), then determine for what (x,y) pairs on this edge will f(x,y) be

(X.y)
either a min or max...add each (x,y) pair to the list:
y ; (2.3)
5 =i f(x,y)=4x+6y—x2—y2 (0,0
u ¥ L S(x0)=dx—x (0.5)
yr=0 =4 L. . f (2!5)
G This is also a parabola opening down: (4,5)
S 1 X max will occur when 1st derivative = 0 (4’3)
L4 '
y=0 f.=4-2x=0 ” (4,0)
=2 (2,0)

so (2,0) should be on the list to check

min will occur at either x=0 or x=4 (must stay

f
in this part of the domain)
so just put both of these points on the list y
(0,0) and (4,0)



» Plug all of the (x,y) pairs on the list into f(x,y) to determine
where the absolute min and max occur:

possible locations of
absolute max, min

y) | f(xy)=4x+6y—-x*—)*

2,3) | £(2.3)=4(2)+6(3)-(2)" —(3)" =13

(0,3) 9

(0,0) 0 ]

(0,5) 5 absolute maximum of f =13 at (2,3)

(2,0) 4 absolute minimum of f = 0 at (0,0) and (4,0)
(4,5) 5

(4,3) 9

(4,0 0

(2,0) 4

If you're thinking, "there must be a better way"...you're right
...stayed tuned: Method of Lagrange Multipliers

Optimization a geometric scenario
Ex) #40. Find the point on the plane x - y + z = 4 that is closest to the point (1,2,3).
'Closest' means minimum distance. 3D distance formula:
d=\(5-x5) +(5, =) +(z,-a)
Distance from general point (x,y,z) to (1,2,3):
d = (x-1) +(y—2) +(z-3)
But if point must be on the plane, then z =4 —x+ y:
d=(x-1) +(y—2) +(4—x+y-3)

cl’=\fx2 —2x+1+y* 4y +4+(1-x+y)(1-x+)

d:\[x2 —2x+l+y2—4y+4+(1—x+y)(l—x+y)

d= sz —2x+1+y* —4y+4+1—x+y—x+X —xy+y—xy+y°

d=2x* +2)* —2xp—4x—2y+6

We need to minimize d, but could choose to minimize d’, so define new function f(x,y):

f(%y)=2x"+2y* —2xy—4x -2y +6
Now, just minimize this (without constraints)

f(x,9)=2x*+2y* —2xy—4x-2y+6  Now, just minimize this (without constraints)

f.=4x-2y—4=0 ...to make sure it is a min:
{fy=4y—2x—2=0 f.=4
4x—2y=4 fo="2
2x+dy=2 Sy =4
; D=(4)(4)-(-2)" =12 s0 max or min
4 2 |4 10 |§ checking f,, =4 >0 means concave up
[_2 4 | 2}”‘4—) 01 4 Therefore, minimum distance occurs at [gij
I3 s 3'3
- ’yz
5 4 >3
one critical point at (—,—]... [5] [4] 11
373 onplane,z=4—-x+y=4—| - |+| - |=—
3) \3) 3
5 411
So point is at —,—,—]
333

5 ¥ (4 .Y (11 .Y
The minimum distance is: d—\/[gglj 4{542) +{?k3j ~1.1547




14.8: Lagrange Multipliers
Optimization with constraints using Method of Lagrange Multipliers

In the last section, we said that, if a function has a constraint in the domain, to establish a
function's absolute maximum or minimum we must find all local extrema but also find the possible
max and min values around all pieces of the constraint boundary. This can be very time
consuming, and luckily there is another way that is easier and also much more flexible, for
checking finding the max/min on the boundary: using the Method of Lagrange Multiplers.

Here is the idea: Suppose we have a function z = f(x,y) and we also have a
constraint g(x,y) =k (which represents staying on some curve in the domain).

In the domain, you could graph level curves for particular values of the output variable...

Lm.ym 11

flx,y)=10
flx,y)=9
flx,y)=8
flx,y)=17
0 X

y

...and as you move along the constraint curve, there is some point at which you've reached the
maximum output value (here, that value is 10).

When you are at this point of maximum output, the level curve and the constraint curve
are tangent to each other:

fle,yy=11
fle,y)=10
flx.y)=9
flx,y)=8
fla,n=7

...and this means that the normal vectors for the curves at this point are pointing in the same

(opposite) direction:
¥

flx,y)=11
flx,y)=10
=9
fla,y)=8
oy =17

g




These normal vectors are also the gradients of the curves...

y

...and these gradients are parallel, meaning the one is a scalar multiple of the other. In other
words, there exists a scalar, A , for which this is true:

Vf =AVg

(at the minimum or maximum point)

This is equally true if we are at a minimum output value. The scalar 'lambda’ A is called a
Lagrange Multiplier.

Optimization with constraints using Method of Lagrange Multipliers

We can use this fact to locate the max or min values of a function subject to a constraint, and this
can be extended to any number of input variables:

Method of Lagrange Multipliers:
To find the max or min of f(x, y,z) subject to the constraint g(x,yaz) =k
(if extreme values exist, and Vg = 0 anywhere on g(x, y,z) =k)

e Find all values of x, y,z, and A such that

Vf(x,y,z) =A Vg(x,y,z)
e Evaluate all the points (x,y,z) found to identify which is the max and which the min.

Ex) Find the extreme values of the function f(x,y,z) =x +2y2
subject to the constraint X +y2 =1



Geometric interpretation
Ex) Find the extreme values of the function f(x,y,z)=x*+2y"

subject to the constraint x? +y2 =] Result: maxf=2 at (0,1) and (0,-1)
In the domain, the f function has inrss 1 Ehigsl and B4,0)
level curves, and the constraint is a
circle centered at the origin with
radius=1. This is what is happening in 3D...

Ya 2 2
max X T2y =2

0,1)

&D ) . (0-1,2) \ \ERS "'é’,’,};’%&f ( lr]n;n; :
VA G
e i,

x2+2y?=1 min \

wif )

The constraint 'grazes' two level
curves, the max at f= 2, and the min
atf=1. X

Optimization with multiple constraints

If you took brief calculus, you saw a variation on this procedure which used lambda and partial
derivatives (a special case which we had to use because we didn't know about gradients), but the
procedure as described here is more intuitive and generalized.

In fact, you can use it to optimize a function subject to multiple constraints. Each constrain
gets it's own Lagrange Multiplier. If we have two constraints, g and h, we use:

Vf(x,y,2)=AVg(x,y,2)+uVg(x,y,z)




Ex) Find the maximum and minimum volumes of a rectangular box whose surface area is
1500 cm? and whose total edge length is 200 cm.



