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| Calc3 — Lesson Notes - Chapter 13: Vector Functlons i

13.1: Vector Functions and Space Curves
Vector,Functions

2D 3D
in2D, a sj:andard function maps each value in in a 3D vector function, maps each value in the
~ the domain to one output value in the range: . domain (a set of real numbers) to a vector.
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x(t), y(t), (1) are the parametric equations of C

a—_
A vector function has the form... . F(f) = <x(0), y(1), Z(} >
..and can have any number' of dimensions, although we'll usually stay.in 3D.

£

yo), z(t) >

y
rt) = < x(), ylt), 20>

We might be given a vector function and asked to sketeh it, or given information about a curve and asked to
. find the functions x(8), y(t), (). this is called 'parameterizing the curve',

. o—- !
A vector function has the form...  I{t) = < x(1), ¥y, z(t} >
..and can have any number of dimensions, although we'll usually stay in 3D.
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g4
(M) = < xt), y(t, z()>



We might be asked to
« state the domain of a vector function
« compute limits of vector functions
e sketch a given vector function’s space curve

« parameterize a curve (find the parametric -equations which define it)

Sketching Vector Functions

Make a table of values for selected ¢ values:

Ex) Sketch 7)) =<2t £>

2
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Parametrization of a line

From last chapter...
| . W . W - ,
For a line: r o= Tp +tV -0 < § <0 so.
(x,,2) = (%0, Yo, 70 + t{&:D,C)

(%, y.2)={(x,+ta, y,+tb, z+ 1)

e e S .
For a line segment. m(1wt)ro+tr1 0<r«l *

x(t)=x, +at
y(t) = Yo +bt
z(t) =z, +ct

-t & f 00

x(t) = x, +at

y(£) =y, +bt

2(t) =2z, +ct
0<¢£1

£x) Find a vector equation and parametric equations for the line segment that joins

P(1,0, )0 Q(2, 3, 1)

)= ét—-«fs)él o, 1>A+E< 2812
= &;a—t o, |-+ ,2)@&3%,&%3
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Parametrization of an ellipse or circle in 2D

; X
o x(t)macost- x = qcost Cosl =—
. or . means a

y(t)="bsint y =bhsint y

/"'\‘ sinf = '-[;

since cos2Z+sin®f=1  (Pythagorean identity)
PN :
—t )% =1 . (circle if a=b, ellipse otherwise)
a

So the parameterization is...

T = bsi ' . :

rty = (acost, Smt> r( = (sint, cost) for 0<i<2x
4 : ' = {~cost, sint

Ex) Sketeh r(f) = (cosZ, sinz) for 0sr<2x = ) for 01527

y y

Parametrization of an ellipse or circle in 3D
What if we add a simple z({t)...

What about this?
— .
A <cOst, sint, t> 7(5 = (cost, sinf, 3>
t1x 1yl z vv z
of tjof o W ~
5 AR R B -/ C:S -
zi-1 o] = G
ir, o 0 1-1 ,3% ) y
X" A X

Parametrization of a parabola, polynomials in 2D
Not too hard to barameterize if you can solve for all variables in terms of just one of the variables:
y=x" letx=t

tz gives ?(?)’ = <t, tz>
y —

Ex) Find a parameterization if ¥ = 2% +3x% +1
z=x"-3

Pipy= L, 2R, T

(uﬁmm X-ﬂf“f‘)




Limits of Vector Functions

‘The limit of a vector function is defined by taking the limits of its component functions:

i 75 = (im=(0) lim»(0).lim=(1)

2 —————
Ex) Find lim<e tz ,cosZt> = 4;/ ’¢ [ > |

-0 " sin’ ¢
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Domain of a vector function
Ex) Find the domain of 7(g = < =2 ins In(9-1 ))\

at>0 (119 o)
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13.2: Derivatives and Integrals of Vector Fuhctions
Derivative of a vector function

!/\\

Recall from single-variable calculus:

y =fx)

]
1
]
]
H
1
3
+
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The derivative of a function (defined by
the of the slope of the secant line)

© givens the slope of the tangent line fo
the curve at x.

in multivariable calcutus

A similer limit stucture defines the derivative of
the vector function. Before taking the limit, this
is a vector between two points on the space
curve which is roughly in the direction of the
curve at the point where £,

Although it is harder to visualize, because we
are taking the limit as h approaches 0, this
derivative vector actually points exactly in the
direction of the curve at {=f so the derivative is
called the tangent vector o the curve.

To standardize the length of this vector, we
divide the vector by it's magnitude to
normalize it and define the unit tangent
vector as:

)
TO=Fry




Finding a unit tangent vector

We don't actually compute the derivative vector geometrically, we use the following theorem:

i 0= (x(0)3(0)#(0)) =432

then ;r(;;:(x'(t),J"(t),Z'(t)) @j,gi_éy 4,02
e A i i U

Ex) Find the unit tangent vector for #(¢)= (3, tz,()> at the point where t = 2. YD E m" 5

. . M:ﬂﬁ’ww,m...m,m.w..,%M..mt:w -
Derivative rules for vectors 1[7)—;:;5 <, L,

Definite integral of a vector function

Because definite integrals are smoothed versions of Riemann sums which can be
computed using limits, and limits are defined for vector functions, you can take definite
integrals of vector functions:

]

{r(t')dtmiﬁgr(g)m
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13.3: Arc Length and Curvature oty
Arc Length Ve Gtlf L -fm*@ > ufﬁ'm;:am»a é'f’

Recall from last year, Ch8, we first defined arc Eength foa smgle»vanab e funct ion;

) {7
L= l‘ﬁZ]P Al ﬁqfﬁ?& g%ﬂ Foct f‘”’m@ /s ,@ﬁ )

: . P w&«-ﬂ )
. A p, , Woee
%ﬁ%ﬂww@u@wnf b o
- 2 1
=lim >°(Ax)’ +(4)
> X

By the méan value theorem: f'(x*)= Ax , Ay=f'(x*)Ax so.. a b
L= IImZ\/(Ax) (4 Ax)’
=tim 31+ (7 () ()
43;)22 (£ (%)) Ax

l-im(f'(x*))zdx

Then, in Ch10 when parametric equations were introduced, the 2D arc length was expmésed in terms of the
parameter, £.

| Y 4=
If C is described by parametric equations x = f(t), y = g(t) N t=a t=b




Arc Length

Now for multivariable calculus, we just extend this c:ompUtatigm info a 3rd dimension: €
b 2 Y |
dx afy)
L= R e 3
! J( dt ) ( dt ‘
b 2 2 2
dx dy [ dz
L=}l =} +| =] +| — 1| dt
g\](dt) (dt) [dr)

w—— x
But we know that the tangent vector, r’(t) is given by:
c— ..which makes sense intuitively. The arc
()= {x'{e), v (). 2 (¢ length is the sum of the lengths of the
( ) ( ( )’y ( )’ ( )> - fangent vectors.

and magnitude of the tangent vector is:

PO = FOF O @)

therefore:

L= i}r’ ()|t

Ex) Find the length of the arc of the circular helix with vector equation
#{7) = (cost, sins, £) from the point (1,0,0) to the point (1,0, 277)

% =(~sint, cost, 1)

) e 7 -

Interval is from 1 =0 fo = 2x {look at z coordinates)

So arc iength is given by:
L= zfx/idt
AT
=[v2(27)]-[V2(0)]

L=2\2x




Arc Length Function

Now that we have a way to calculate length of the arc, we could write thatas a
function of the parameter ¢ by considering the arc length from an initial pointa fo t

r 4

R i EREIRER

du

By the fundamental theorem of calculus part I:  &(x)= [/ (u)du, then g'(x)= f(x) < (L\Q (/{/54
o N
differentiating both sides of the length expression above WRT t gives: (‘{\91'\ /{Wg
 — ‘ /Ca( /
, _Q{z _ [f" (t)l
dt

Another way to say/remember this is that the magnitude of the fangent vector represents the rate f

of change of arc length as it moves along the curve (and we can find a function for arc length by
taking the antiderivative of this derivative).

Parametrizing a curve with respect to arc length z

We can use the derivative expression o change the parameter to arc length which is C oo

sometimes useful because it doesn't depend upon having any particular coordinate
system. '

Here is how that would look with the helix example: (1&,9‘ =

—
Ex) Reparametrize the helix r(¢) = (cos#, sint, #) }
with respect to arc length measured from (1,0,0) in the direction of increasing f.
Starting with the magnitude of the tangent vector (from previous example). ‘wa (% ) ' LA
ds _ ") =2 T &”*‘mi“"‘" T
250

ERe: ;’:/l 5 ) & . Y - o ‘\__‘-9 5
Pl = sty p

»

s=5(1) m}[r’(&){du = j\/fdtl =2t

S0 s:'ﬁf, f=
V2 =
We then substitute this into the original vector expression: ““1;2_ - <
- - =
r(0)= cos(0). sin(s). ) etz T\ =t R

)= (o 35} 35 ). %)




Arc length computation with reparametrized curve z
if we now compute the arc length again, it should give us the same value: ‘

o-{ol o) 3

What are the new start/end values for 7 {using the 2 coordinates again)

=mQ=>5=0 wz27rz>s 2\/:?:72
\[—

L= j' idsmf&\/iﬂ

0

“The point is, there are many possible parametrizations for a curve, but the arc length is a
physical property and will always be the same if computed correctly.



So what's the difference?
We can parametrize a curve using the vector function parameter, ¢, or we can parametrize a curve using this alternative
variable, s...what is the difference?

If we parametrize using t and find the arc length... if we parametrize using s and find the arc length...
z :
z
¢ o] 4
£t

t=4

s=7

1,0,27)

(4,0.0) " ' (1,0, 27)

> A e 5
7 (.s) ds (109 o K;f, ) ds

cuh

L - ¥
?(t)‘ dt ‘*—'M t ~”£‘7
parameter domain, t '

t=b

i-]

L is the arc length...

s=1

L is still the arc length...

.and to find it, we take a small part of a new domain, ds, which is
..and to find it, we take a small part of the domain, dt, along the curve itself {like a new, curving, axis as the domain)

<y
multiply it by 'r’ (s)‘ which produces a smalt length

along the curve, which scales each unit in this
new s domain to an actual length along the curve

[y
..multiply it by r'(t)l which produces a small length
along the curve, in the direction of the curve

...and then use an integral to sum these lengths = L. .and then use an integral to sum these lengths = L.

Why would we do this?

Right now, there is no advantage to reparametrizing, so we won't do this. But later, we may need to sum other things up using
an integral besides just the length of the curve itself.

For example, maybe we want to sum up the total electric field along a curved path, and we would have a function to express the
electric field in a direction.

t=b

L= f (some expression for electric field ) ;?(t) dt
s=b -y
L= I (some expression for electric field)\r' ()| ds

The expression for electric field might be simpler to write using the parameter ¢, or it might be simpler expressed as a function
along the direction of the curve, s, which would make computing the integral simpler.




Curvature ,

How curvy is a curve? gradual change
in tangent

c direction
~J,_ (low curvature) eaa [2PId change in
g tangent direction

¢ (high curvature)

X
Curvature at a given point is & measure of how quickly the curve changed direction at that point, and is
defined as the magnitude of the rate of change of the unit tangent vector with respect to arc length. (Arc
length is used so curvature will be independent of the parametrization).

Curvature is easier to compute if expressed in d_j“b ;‘f ds

Definition: .
curvature | J7 ; oo v 5 §d i 5 e e
pad ; terms of tinstead of s, s0 by the Chain Rule: T sl
L ¥
kappa' | 98 ]T'(;)I
x(t)= R

In practice, this equivalent formula (proved in the
textbook) is usually used instead: (Y% r"(1
e Oxr" @)

I (o)

—lp

Ex) Find the curvature of 7 (t) = <t, £, 1+ t2>

Pl = e TOT®

T = 20,02 IETR

| POz ([Feretar) L

| s o 2
f,(%”*wf

L 2oy(a-o

= ‘Z‘.Z'”g .-»Z? o7
PP R) =] g =/®

| PO 7O

hen e k= g




Osculating circles - geometry interpretation of curvature
You can imagine creating a circle wh:c;h is tangent to the curve at a point, and whose radius reflects a curve

roughly ‘as curvy' as the curve:

X

osculating
circle radius

tho'-

p=-

1
K

_.such a circle is known as an osculating circle (from the Latin osculim, meaning 'kiss').

You can imagine creating a circle which is tangent to the curve at a point, and whose radius reflects a curve

roughly ‘as curvy’ as the curve:

X

Each osculating circle exists on a plane formed by
the radius and the tangent vector, called the
osculating plane

The Normal vector to a curve at a point is
defined as in the direction of the radius from the

point to the center of the osculating circle.

The TNB Frame and the 5 things we know at a point on a curve

The Normal vector, N, points to the radius of curvature (is

The Paosition vector, T, is

from the origin to the point.

perpendicular to the tangent vector and in the osculating plane).
[t can be calculated from the unit tangent vector:

i
2

r

The derivative of the position
vector, tangen’c 7', is in the direction
of travel {direction of curve with ¢
increasing).

—

» ¥ The Unit Tangent vector, T, isr,
but normalized to unit length.

‘ - — =
The Binormal vector, B, is defined as B(¢) =T (¢)x N(t)
and is perpendicular to the tangent and normal vectors.

-

N () =L

(1)

|




The planes at a point on a curve

The Binormal and Normal vectors form the Normal
plane, which is perpendicular to direction of
movement.

e Tangent and Normal vectors form the
Osculating plane, which is the plane most close to
representmg the direction of 'osciliation’ of the curve
near the point.

Applets for viewing TNB frame

https://www.geogebra.org/m’kaGKS9BB
&

https://www.geogebra.org/m/rs4dwmyex
® v

Summary of formulas

To-my PO FOTON0

()= d:r [P _Fe<)
PO e

pm

A=



13.4: Motion in Space: Velocity and Acceleration
Velocity and Acceleration with vectors

Motion in one direction only

In earlier classes we said ihat velocity is the derivative of displacement and

‘acceleration the derivative of velocity: ,
: displacement
s

distance (displacement): s{f)=1*—5¢ +8m

_ 58 s(t+h)-s(t)
s

pz

" (teh, s(t+h)

(t, s(t)

average velocity: Vg,

instantaneous velocity: v(t) - ;lmgiw__z.:f_(ﬂ = s’(t) ) t+h
v(t)=2t-5 m/s
acceleration: a(t) = v’(t)
a(t)=2 m/s*
Motion in 3D

To analyze motion in 3 dimensions, we use vectors for the variables

position: 7{0 = <x(t), GR z(t)>

velocity: ';;tt) =;y(t) = (x’ (1), ¥'(2), Zr(‘))

acceleration: a(t) m‘;;(t) =(x"(¢), y"(t), 2'(1))

Without vectors, we would have to compute effects in x, y, and z directions separately. Vectors
ailow us to do this in a single calculation.

gy,
~ Ex) Find the velocity and acceleration vectors for (1) =(3cost, 2sint, 1)
and evaluate at 7 =— _

atany t ag_zzﬁ
. f'w) 3 o
\ft L Vo s
position: (M ?(t)w{Bcost,Zsinr,l} (Tr) =3 F , 25 % 2 )
"’ =% fi
> a 20562
velocity: | V[é):'(%'\"&/ et V,{r&'*) (_391'“: 2(;-)“ \>
( =785 1,10

acceleration: 2y

ﬁ&)LéacoS*/“zg’\"'h 2 2N (Tr) <jca} 3, "’ZS!I\ ;‘5} o2
(.,.,3 ,( o>



Meaning/interpretation of velocity and acceleration
Ex) Find the velocity and acceleration vectors for ”;Tt) ={3cost, 2sint, £)

and evajuate at [ =—
https://www.geogebra.org/m/rs4wmyex

position: F{r)=(3cost, 2sinz, 1)

(ERCE

the position of the polnt in space

BN
2
velocity

velocity:  (¢) = (-3sint, 2cost, 1)

522

the speed and direction of the point

acceleration: '&Tt) = {~3cos?,—2sinz, 0)

A5

retated to the force which is acting on the point to cause the change in velocity

(~2.59,1,1)
3B

velogcity

The magnitude of velocity is speed:

speed =[] = \/("’3‘/“} +(1) +(1) =2.958 mis

acceleration: a(7)=(~3cost, —2sint, 0)

()5

related to the force which is acting on the
point fo cause the change in velocity and is in
the direction of the Normal vector.

Acceleration is related fo the force on an object
by Newton's Second Law of Motion:

iy -—
F=ma
— :
- F The amount that an object moves, when acted
(= — upon by a force, depends upon ifs mass, m. The
m more mass, the less change in velocity (smaller

acceleration),



Meaninglihterpretation of acceleration

This affows us to explain things iike circular motion. Imagine a ball connected to a string, and twirling the ball
around in a circle at constant speed:

Although the speed (magnltude) of the veloclty
vector is constant, the direction of velocity is
constantly changing for the ball to move around

the circle.
- .y The acceleration vector is always fowards the center of the
F=ma circle and is caused by the force the string exerts on the ball.

Projectile motion in 3D

Projectile motion is a special case of motion in which an object starls at
some initial position, is 'launched’ with an initial velocity, but then is only
acted upon by the force of gravity, which is conventionally directed in the
negative z direction.

Let's develop the equations for projectile motion by starting with an
acoeleration vector with a negative z component. This component is
called the gravitational constant, g

-l

a{t)=(0,0,-g)

Acceleration is the derivative of velocity, so we can find velocity by taking the antiderivative:
- : g
w(t)=(fodr, [odt, [(-~g)dt)=(0,0,~g)+C

The integration constant is the velocity when =0, or the initial velocity, \737 which is also a vector:

- . -
5 v(1)={0,0,—gt)+v, = (0, 0,«—-gt)+<v9x,vw,vm_)

-y
V(t) = <"nx9"’ay»"’0z “8¢> ‘
Velocity is the derivative of position, so we can find position by taking the antiderivative:

I ' z
r(r)= <Iv0xdt, jv(,ydt, j'(vm, - gt)a’t) +C
Again, the integration constant is the position when =0, or the initial position, r'o’:wihich is also a vector:

a2 ' 1 2 - 1 )
r(f) o Vﬂxj‘i vOyfﬁ vﬁat Mmzmgg iy = Vbxt; 4po;;.vt» vﬂat M}Mgf + <ri!x7 Yoyps Yoy >

The resutlting vectors are:
oy
a(t)=(0, 0, -g)

;zt)=<V0xa Yoy o vﬁz“gt>

-~ 1
oo IR 2
r(t)= <’6x Fods Toy tV by T Vot =S8t >
Looking at the parametric equations for the position {the "trajectory’):

x(t)=r, + vyt |
..the object starts at an initial position, and in the x and y directions,
-~ . continues moving steadily with whatever initial velocily is imparted.
y(t)"""rOy"i"vOyt i
- 1 . |
z(t) =F Yyl —— gtz But the z-position is affected both by the initial velocity and gravity.
2



Projectile motion in 2D

e To keep things more manageable, we often consider cases of 2D motion
I (and then define gravity in the negative y direction}. We can alsc define
\ an angle of elevation, <, which allows us fo specify the initial velocity

with X and y components.
Now, acceleration is:

iy
a(t)=(0, -g)
Acceleration s the derivative of velocity, so we can find velocity by faking the antiderivative:

V(r)=([odr, [(~g) dt) = (0,~g)+ (v, s, )

?(x) = v9 cos @, v, sina — gt')

Veloeity is the derivative of position, so we can find position by taking the antiderivative:
”;(t) = <I("e cosa )dt, j'(v‘, sine — gt)dt) = <(v,, cosa )1, (v, sina )t é« gt >~4« (ir;,x, Toy )
‘r*(t) = <(v° cosa)t,(v,sina)f—- %gf > Fire

Units for Projectile motion

The numerical values depend upon whether we are working in metric or imperial units:

N Imperial Units Metric Units
/N distance: rinft rinm
veilocity: vinft/s vinm/s
acceleration: a in ft/s’ a in m/s’
mass: m in siugs minkg
force: Finlbs FinN
gravitational constant: g = 32 fts? g = 9.81 m/is?

Ex) Find the velocity and position vectors of a particie that has the given acceleration and the given initial
velocity and position:  ws

a(t)={2,6,12¢%)  (0)=(1,0,0)  70)=(0,,-1)
T=fzeon = <oe, 47, W2+ %,
GO Gt ee> |

j%&)ﬁ({f - cilit, t e*>4«f’
[Py = L4 T




‘Ex) A projectile is fired with an initial speed of 500 m/s and an angle of elevation of 30° from a starting
position 200 m above the ground. Find...

(a) functions for position (height), velocity, and acceleration as functions of time, "'\'/2 PR et
{b) the range of the projectile,
7 (c) the maximum height reached, and AR ,
(d) the speed at impact, 250y
.(A) ‘?[03: <‘9,2@"7 (0) <S‘b0a_5% ,S’oost)q 5D | ‘ A
= <Y 23, o2F; 250> oy & '

{A—aég < D'"‘ﬂj -v-k & -9, K(? r)'\/5
TH= L fos, f%m#? — Lol LG C
OA—{* =o < 433.012% 2502 = Z ¢ ,~481 ()€ > L 233,022

Cmp =250

5°i;t*‘=7—~ L4330 —A8lt +"25%>2mf:£§

bz £ [yprerdk, S [~ & e 22 Dokt >
= 93, ot +C3, ~H QostFezxob 04D
o> = £ WBRorlMG, Y, agcta) 250(0) +0,>
(220, Cyz &°

Gt

W e

r SC-E)— <W33 o123+, w—-\rqome ‘{»‘2.&9(:“4-»2&‘-*? W\!

. (%) hon when Reigh 4ty =0 -
Y‘&my;t} )( o poSFhon P
| VL@*?%‘:? when =4 fosi Tt P0 = ( bj C@‘cw\'rkfi‘mﬂ =577 S)

' x(s’l.o»):%?-m?fr(xl.q»)wz 772236 . TSt 7 o

() o max hesh b %{?— o %o g Loprdlyte oF Ve/\mﬂ‘ﬁ} -4,8| strwz;
, ‘ 43&. =2 qux =~ 25, Y¥Ree

}\e ?”“ o AR fﬁﬁ% S ?6}2‘5"@’\ ! -4 W(zr W) +zre(EEedy) + e

| o then haignés = B

=517

() Zped= (v«lm(y] ‘ﬁvm [b) i mpect wt 451
Nlsta): Li33027) —a,g/(s12) +255

= é‘lﬁ%g{zﬁ*/*2f’*:mﬂf>

\\ Sﬁw(f F}r ;ngz* 25%, mb = / So¥ i3 m/s /




L

Homework hinis: ‘ \
#19) find expression for speed, and remember that things are minimized when 1st derivative = 0.

#22) to make this more manageable, consider a helical path: 7 () = (cost,sin, )
calculate T and N vectors, and show they are orthogonal by checking dot product = 0.
for a difficult challenge: if you want to show this is true for all cases, use this structure...

[v|cos Bcos

(O

|v|cos Beos B

First show the projections of v are true as shown, then find the T and N vectors (you don't need to
normalize). Remember, even though |v| is a constant, & and 3 are functions of t.

#29) Use a coordinate system with catapuit at origin:

‘-'“mm-uu—m*‘,__*‘
-~
b

/":,;:""'\:’ .\‘\
Kol ) (100,15) * (800,15)
i’ 15m U‘l‘ 15 mﬂ
- i
(0,0,0) 100 m 500 m

Solve two cases: find range of angles of elevation to just barely go far enough to get inside the first wall,
and range of angles of elevation to just barely not go past second wall.

You should get a quadratic in tan & if you use the trig identity: sec” & = tan” ez +1

-




