Calc3 — Lesson Notes - Chapter 13: Vector Functions

13.1: Vector Functions and Space Curves
Vector Functions

2D

3D
In 2D, a standard function maps each value in

In a 3D vector function, maps each value in the
the domain to one output value in the range:

domain (a set of real numbers) to a vector.
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a space curve, C

- # =<1 108
—
r(3) = <3,5, 9>
b'¢
x(t), y(t), z(t) are the parametric equations of C
—
A vector function has the form... () = < X(1), y(1), 2(1) >

...and can have any number of dimensions, although we'll usually stay in 3D.

z

P(x(®), y(1), z(t))

. y
rt) = <x®, y), z(t)>

X

We might be given a vector function and asked to sketch it, or given information about a curve and asked to
find the functions x(t), y(t), z(t)..this is called 'parameterizing the curve'.

—p
A vector function has the form...  H(t) = < X(1), ¥(1), 2(1) >

..and can have any number of dimensions, although we'll usually stay in 3D.
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P(x(t), y(t), z(1))

y
rt) = <x@), y), zt) >




We might be asked to:

« state the domain of a vector function
e compute limits of vector functions
e sketch a given vector function's space curve

e parameterize a curve (find the parametric equations which define it)

Sketching Vector Functions

Make a table of values for selected t values:

—l
Ex) Sketch r)=<2t, ¢ >

Parametrization of a line

From last chapter...

For a line: F": " +tv —0<t< O so:
<x,y,z> = (xn,yo,zo> +1 (a,b,c>
<x, ¥,z ) (xu +ta, y,+th, z,+ tc)

3 —_
For aline segment: :(IHI)F; + t?: 0<t<l1

x(r): x, +at
y(£)=y,+bt
Z(I)= Z,+ct

—0 <l <®

S0:

x(1)=x, +at
»(t)
(t)

0

¥y, +bt

Z,+ct

\f\

Ex) Find a vector equation and parametric equations for the line segment that joins

P(1,0, 1) to Q(2, 3, 1)




Parametrization of an ellipse or circle in 2D

x(f):acost X =acost cost =

) or . means
y(f) =bsint y =bsint .
sint =

o= n =

Since cos’z+sin’#=1 (Pythagorean identity)

x2 2
—+ WJ_} =1 (circle if a=Db, ellipse otherwise)
a b

So the parameterization is...
—_— T
Hy = (acost, bsmt) r()) =(sint,cost) for 0<r<2z

—_— . —f .
Ex) Sketch ) =<COSt, Sll’it> for 0<r<27 () < cos?, Slnt) for 0<t<2%

y y

Parametrization of an ellipse or circle in 3D

What if we add a simple z(t)... What about this?
— _ . — .
ny = (COSf, smf, t) rt = (cost, sint, 3}
t | x z Fz z
o] 1 0 Sl

heli
X a helix X

Parametrization of a parabola, polynomials in 2D
Not too hard to parameterize if you can solve for all variables in terms of just one of the variables:
y=x letx=t

12 gives ,»_(t)’ = (t, t2>
y=

Ex) Find a parameterization if ¥ = 2x° +3x" +1

z=x"-3



Limits of Vector Functions

The limit of a vector function is defined by taking the limits of its component functions:

lim 72 — <1imx(t), lim y (1), limZ(f)>

{—a i—a

IZ
ing lim({ e, ——, cos2¢
Ex) Find Hﬂ< Sin® 1

Domain of a vector function
) . —_— (-2 .
Ex) Find the domain of r) = <E,sm1,1n(9—z2)>



13.2: Derivatives and Integrals of Vector Functions
Derivative of a vector function

Recall from single-variable calculus:

y =1(x)

() = tim L FHA) =S (%)
f1(x)=lim——————

The derivative of a function (defined by
the of the slope of the secant line)
givens the slope of the tangent line to
the curve at x.

In multivariable calculus:

r(t+h

r’(l) i r(t+hg—r(t)

h—0

A similar limit structure defines the derivative of
the vector function. Before taking the limit, this
is a vector between two points on the space
curve which is roughly in the direction of the
curve at the point where f=t.

Although it is harder to visualize, because we
are taking the limit as h approaches 0, this
derivative vector actually points exactly in the
direction of the curve at t=t so the derivative is
called the tangent vector to the curve.

To standardize the length of this vector, we
divide the vector by it's magnitude to
normalize it and define the unit tangent
vector as:




Finding a unit tangent vector

We don't actually compute the derivative vector geometrically, we use the following theorem:

i r(0) = (x(0) () (1))
then r'(1)=(x'(1),y'(1),2' (1))

—
Ex) Find the unit tangent vector for r(z)= <3t, £, 0) at the point where t = 2.

Derivative rules for vectors

(3] THEOREM Suppose u and v are differentiable vector functions, c is a scalar,
and f is a real-valued function. Then

I %[II(I) + v(n)] = a'(s) + v'(1)
2 2 [cu)] = cw’
- & culr)] = cu'(n)
d
3. — FOu@] = f@ul) + fOu()
4. "‘% [u(®) * ¥())] = w'(r) * v(r) + u(e) - v'(1)
5. % [u(®) x v(0] = w'(r) X ¥(r) + u() X v'()

6. % [“(I(f))] = f(Nu'(f(r)) (Chain Rule)

Definite integral of a vector function

Because definite integrals are smoothed versions of Riemann sums which can be
computed using limits, and limits are defined for vector functions, you can take definite
integrals of vector functions:

ir(:)d:: Egr(q)m
:lim<§x(t,.)m, 3w, z";z(;,.)m>

n—pa0

i=1

=<um§x(:,_)m, ggy(f,.)m, umgz(z,_)m>

n—yan n—yon &

(o, fotopn. o)



13.3: Arc Length and Curvature

Arc Length

Recall from last year, Ch8, we first defined arc length for a single-variable function:

= hmz PP y

I Py
=tim 35 (5.0 + () B B gt
= limZJ(Ax] +(Ay)
n—yo0 i-1
, Ay : X

By the mean value theorem: f (x*)ta, Ay = f'(x*)Ax so... a b

L=tim 3 (ax) (7 (x*) )

ﬂmzw%mﬂnﬁif
_,],",E,Z‘“Jr f(x

Then, in Ch10 when parametric equations were introduced, the 2D arc length was expressed in terms of the
parameter, t:

y ¢=
If C is described by parametric equations x = f (1’), y= g(t) A = t=b

1o} (2]
5 dx

P




Arc Length

Now for multivariable calculus, we just extend this computation into a 3rd dimension: Z

fy(5) (2]

at OROROk

e—-
But we know that the tangent vector, r'(t) is given by:

X

...which makes sense intuitively. The arc

?% — <x'(z‘),y'(t),z'(t)> nggghnits\f?cet-os;gm of the lengths of the

and magnitude of the tangent vector is:

F(0] =) +(r () +(= (1))
-]

Ex) Find the length of the arc of the circular helix with vector equation z

m = (cosz,sinz, z) from the point (1,0,0) to the point (1,0, 27)
—_—
’ l)=

r'(
|m| z\/(—sin!)2+(cosl)2 +(1) =2 (1,0, 27)

Interval is from ¢ =0 fo = 2x (look at z coordinates)

therefore:

r'(1))dt

(—sin 1, cost, 1)

So arc length is given by: X
2r
E= I NGY
0
2z
= [ﬁt]a

=[V2(27)]-[V2(0)]
L= 2\57:




Arc Length Function

Now that we have a way to calculate length of the arc, we could write that as a z
function of the parameter { by considering the arc length from an initial point a to t:

-2 (2] ()

s(t)=L=:[

By the fundamental theorem of calculus part I &(x)= [/ (u)du, theng'(x)= f(x)

differentiating both sides of the length expression above WRT f gives:
ds

g:[m'ﬂ

Another way to say/remember this is that the magnitude of the tangent vector represents the rate

of change of arc length as it moves along the curve (and we can find a function for arc length by
taking the antiderivative of this derivative).

Parametrizing a curve with respect to arc length

We can use the derivative expression to change the parameter to arc length which is

sometimes useful because it doesn't depend upon having any particular coordinate
system.

z

Here is how that would look with the helix example:
—
Ex) Reparametrize the helix r(7) = (cosz, sint, r)
with respect to arc length measured from (1,0,0) in the direction of increasing t.

Starting with the magnitude of the tangent vector (from previous example):
70~z

t t
s=s(e)= [|r" ()| du = [ V2du =2

0 0

So s=\/5r, r=—2‘-

J2

We then substitute this into the original vector expression:

r(l) = (cos(a‘), sin (t), 1)

r(s)=<°°s{?/%} S(TSEJTSE>

ds _
d




Arc length computation with reparametrized curve z
If we now compute the arc length again, it should give us the same value:

= (_J [_] L
V2 2 )2
What are the new start/end values for s? (using the z coordinates again)

S S

=27:zs=2\/§;ﬁr

)
S

L= j- 1ds 4227

The point is, there are many possible parametrizations for a curve, but the arc length is a
physical property and will always be the same if computed correctly.



So what's the difference?

We can parametrize a curve using the vector function parameter, ¢, or we can parametrize a curve using this alternative

variable, s...what is the difference?

po—f—i—>
parameter domain, ¢
L is the arc length...
..and to find it, we take a small part of the domain, dt,
.multiply it by

r'(#)| which produces a small length
along the curve, in the direction of the curve

..and then use an integral to sum these lengths = L

If we parametrize using ¢ and find the arc length...

If we parametrize using s and find the arc length...

s=h|_y

s=a

L is still the arc length...

...and to find it, we take a small part of a new domain, ds, which is
along the curve itself (like a new, curving, axis as the domain)
..multiply it by |r'[ ] }‘ which produces a small length

along the curvle. which scales each unit in this
new s domain to an actual length along the curve

..and then use an integral to sum these lengths = L

Why would we do this?

an integral besides just the length of the curve itself.

Right now, there is no advantage to reparametrizing, so we won't do this. But later, we may need to sum other things up using

For example, maybe we want to sum up the total electric field along a curved path, and we would have a function to express the
electric field in a direction.

1=a

s=a

t=b
L= J- (some expression for electric field) ?(t) dt

s=b
L= I (some expression for electric field ) ?(s) ds

The expression for electric field might be simpler to write using the parameter ¢, or it might be simpler expressed as a function
along the direction of the curve, s, which would make computing the integral simpler.




Curvature

. ¥ 4
How curvy is a curve?

gradual change
in tangent

C direction

(low curvature)

rapid change in
tangent direction
(high curvature)

X

Cu_rvature at a given point is a measure of how quickly the curve changed direction at that point, and is

defined as the magnitude of the rate of change of the unit tangent vector with respect to arc Ieng:[h. (Arc
length is used so curvature will be independent of the parametrization).

Definition: Curvature is easier to compute if expressed in dT dT ds
curvatll.ge dT terms of t instead of s, so by the Chain Rule: ——

dt dS dt
'kappa’ dS

[ (1) x " (2)|
T

In practice, this equivalent formula (proved in the
textbook) is usually used instead:

—

Ex) Find the curvature of r(t) = <t, 1,1+ 2‘2>



Osculating circles - geometry interpretation of curvature

You can imagine creating a circle which is tangent to the curve at a point, and whose radius reflects a curve
roughly 'as curvy' as the curve:

osculating
circle radius

X ...such a circle is known as an osculating circle (from the Latin osculum, meaning 'kiss').

You can imagine creating a circle which is tangent to the curve at a point, and whose radius reflects a curve
roughly 'as curvy' as the curve:

j Each osculating circle exists on a plane formed by
the radius and the tangent vector, called the
osculating plane

The Normal vector to a curve at a point is
X defined as in the direction of the radius from the
point to the center of the osculating circle.

The TNB Frame and the 5 things we know at a point on a curve

The Normal vector, N, points to the radius of curvature (is
perpendicular to the tangent vector and in the osculating plane).
It can be calculated from the unit tangent vector:

C

The derivative of the position
vector, tangent r', is in the direction
=% of travel (direction of curve with ¢

I increasing).

The Position vector, T, is
from the origin to the point.

» )/ The Unit Tangent v&or. T, isr,
but normalized to unit length.

e — — —
The Binormal vector, B, is defined as B(1) =T (1) x N(¢)
and is perpendicular to the tangent and normal vectors.



The planes at a point on a curve

7 The Binormal and Normal vectors form the Normal
plane, which is perpendicular to direction of
movement.

o
|
~

The Tangent and Normal vectors form the
X Osculating plane, which is the plane most close to

representing the direction of 'oscillation’ of the curve
near the point.

Applets for viewing TNB frame

https://www.geogebra.org/m/’kaGKS9BB
@

https://www.geogebra.org/m/rséwmyex
3

Summary of formulas




13.4: Motion in Space: Velocity and Acceleration
Velocity and Acceleration with vectors

Motion in one direction only

In earlier classes we said that velocity is the derivative of displacement and
acceleration the derivative of velocity:

displacement
s
distance (displacement): s()= r’—5t+8 m 4 5
P, ;
s, —s Ss(t+h)—s(t
average velocity: V., = 2 1= ( ) ( ) (t, s(v) (t+h, s(t+h))
b= h
s(t+h)—s(t >t
instantaneous velocity: v(t) - lim—(—)—(—1 = s’(z) t t+h
h—0 k

v(t)=2t—5 mls

acceleration: a(t) = V'(I)
a(z‘):2 m/ s’
Motion in 3D

To analyze motion in 3 dimensions, we use vectors for the variables:

position: :(t):(x(t),y(!),z(t»
ot ) =(0) = (<(0). (0. 2(9)

acceleration: :{(3) :-;r(t) = <x"(t), y' (1), z"(t)>

Without vectors, we would have to compute effects in x, y, and z directions separately. Vectors
allow us to do this in a single calculation.

—
Ex) Find the velocity and acceleration vectors for r(:) = {3 cost, 2sint, t>
and evaluate at ¢ :%

A
at any t att=—
3
position: #(t)= (3005 t,2sint, t>
velocity:

acceleration:



Meaning/interpretation of velocity and acceleration
—
Ex) Find the velocity and acceleration vectors for r(¢)=(3cost, 2sinz, 1)

Fa
and evaluate at 1 =—

position: -r'( 1)=(3cost, 2sint, 1)

B)-6 a3

the position of the point in space

velocity: T;'(; = —3sint,2(:ost, l>

-5

the speed and direction of the point

https://www.geogebra.org/m/rsdwmyex

acceleration—[ -

=

position

acceleration: ;Tt) = (—3 cost,—2sint, 0>

A5)-3-59)

related to the force which is acting on the point to cause the change in velocity

The magnitude of velocity is speed:

S_peed=|;|=\/( MJ +(1)} +(1) =2.958 m/s

acceleration: g(r)=(-3cos,—2sinz,0)

(5)=(3-0)

related to the force which is acting on the
point to cause the change in velocity and is in
the direction of the Normal vector.

Acceleration is related to the force on an object
by Newton's Second Law of Motion:

— —
F =ma
—
- F
a T T
m

acceleration).

acceleration |~

The amount that an object moves, when acted
upon by a force, depends upon its mass, m. The
more mass, the less change in velocity (smaller

acceleration—| -

(é
L, __2;_.

position

positioﬁ

ST

B

33

———.1,1
2

velocity

3

(-2.59,1,1)

velocity

2.958 m/s

3

33
2

velocity

2.958 m/s



Meaning/interpretation of acceleration

This allows us to explain things like circular motion. Imagine a ball connected to a string, and twirling the ball
around in a circle at constant speed:

i
""'- -~

Although the speed (magnitude) of the velocity
vector is constant, the direction of velocity is
constantly changing for the ball to move around
the circle.

— = The acceleration vector is always towards the center of the
F=ma circle and is caused by the force the string exerts on the ball.

Projectile motion in 3D

Projectile motion is a special case of motion in which an object starts at
some initial position, is 'launched' with an initial velocity, but then is only
acted upon by the force of gravity, which is conventionally directed in the
negative z direction.

Let's develop the equations for projectile motion by starting with an
acceleration vector with a negative z component. This component is
called the gravitational constant, g:

-—fp
a(r)=(0,0,~g)
Acceleration is the derivative of velocity, so we can find velocity by taking the antiderivative:
— —
v(1)= <_[0 dr, _[0 dt, _[(—g) dt> =(0,0,—gt)+C
The integration constant is the velocity when £=0, or the initial velocity, v—t;':which is also a vector:
- -
v(1)=(0,0,—gt)+v, =(0,0,— gr)+ (VOI Vo v02>
—
D) = (s Vege Vi —21)
Velocity is the derivative of position, so we can find position by taking the antiderivative:
— -
r()= <Iv0xdt, [voyat, [ (v, - g!)dt) +C
Again, the integration constant is the position when t=0, or the initial position, r-o','which is also a vector:

r(l) ={ VouT'> Voyt> Vosl — Egt +1y = { VouI, Vo, 1, Vo T — Egt + (rm, Toys Tox >

The resulting vectors are:
—
a(1)=(0, 0, ~g)

;.(t) = <v0x, Vo> Vos —gt>

— 1
= 2
r(t) - <?;]x +v0xt3 ’;)y +v0yt= r()z +v02t_5gt >
Looking at the parametric equations for the position (the 'trajectory’):

x(t) = rOx + vﬁxt
...the object starts at an initial position, and in the x and y directions,

_ continues moving steadily with whatever initial velocity is imparted.
y(t) =5, +v0yt

Z(t) =7y, +Vy,t— lgtz But the z-position is affected both by the initial velocity and gravity.
2



Projectile motion in 2D

To keep things more manageable, we often consider cases of 2D motion
(and then define gravity in the negative y direction). We can also define

an angle of elevation, &, which allows us to specify the initial velocity
with x and y components.

Now, acceleration is:
-—
a(1)=(0, -g)
Acceleration is the derivative of velocity, so we can find velocity by taking the antiderivative:

V() =(fodr, [(~g) dt)=(0,~ gt)+ (v vy,

Oy
V(t) = (v, cosa, v, sina — gt)

Velocity is the derivative of position, so we can find position by taking the antiderivative:
-;(t) = <‘|l(v'J cosa)a’t, I(vo sina —gt)df} = <("o cosa)t, (Vo sina)t - % gt’ > + <ror, rny>

7)= <(v0 cosa)t, (v, sina)r—% g > e

0

Units for Projectile motion

The numerical values depend upon whether we are working in metric or Imperial units:

Imperial Units Metric Units
distance: rin ft rinm
velocity: vin ft/s vinm/s

acceleration: ain ft/s’ ain m/s’
mass: m in slugs m in kg
force: F inlbs FinN
gravitational constant: g =32 ft/s® g=9.81m/s?

Ex) Find the velocity and position vectors of a particle that has the given acceleration and the given initial
velocity and position: —»

a(r)=(2,66,12¢%)  $(0)=(1,0,0)  7(0)=(0,1,-1)



Ex) A projectile is fired with an initial speed of 500 m/s and an angle of elevation of 30° from a starting
position 200 m above the ground. Find...

(a) functions for position (height), velocity, and acceleration as functions of time,

(b) the range of the projectile,

(c) the maximum height reached, and

(d) the speed at impact.



