Calc3 — Lesson Notes - Chapter 12: Vectors and the Geometry of Space

12.1 / 12.2: 3D-coordinate systems, intro to vectors

What makes this Calc '3' is that we are working with 3 or more

variables, which correspond to 3 or more dimensions. (Mostly, we'll
stick to 3D not higher dimensions)
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Distance between two points...

y P,

wz’yz)

(xlayl)

BB = (x,-%) +(3,- %)

Midpoint between two points...

midpoint of PP, :(xl;x:!,yl“;}’zJ midpoint of PP, :[Jﬁ ;xz ’Jﬁ;J’z?Zl;zZ]

(review) Completing the square to put an equation in standard form:

Show that the equation represents a sphere, and {ind its center and radius:

4x* +4y* +4z° +16y =8x



12.2 Vectors

A vector is a directed line segment, and is characterized by its
length and direction.

Let's go back to 2D to start... textbook indicates a vector by
making the letter bold (too hard to
y do by hand, so we add an arrow
above the letter)
_.(xo’yo_) (%:J’b) =V
Is a point is a vector
x X
—
termi . V=(x2 X5 ) y1>
erminal point i
v () 7=(3.4
v length: ‘;‘ — 32142 =5
[Z) direction: a4 o
X irection: g=tan'| = |=53.15
(0,0) ?
initial point

The length of the vector along each axis direction is called a
component. In 2D, each vector has two components:

comp, § 7 ;

% 7]
X

—
compyv

You can think of the components as being like the shadow of the
vector on the x or y axis if you shined a flashlight on the vector.

This is called the projection of the vector onto
the x-axis or y-axis.



Converting between components and length, angle

?= (compx, compy>

i 2 2 "
|V‘ = \/COMPI +comp, comp_ = v cos@
comp ¥
o .
6 = tan - comp,, = ’v‘ sin @
comp .,

vl = 32+22=\/§ com Z\/ECOS33.7°
=+ p,

1
I V135in33.7° 2

6 =tan"' [—J =33.7°  comp, = J13sin33.7°

X 3

\/Ec0533.7°

Vector equality

Two vectors are considered 'equal’ or 'the same vector' or 'equivalent’ if
their magnitudes and directions are the same, regardless of where the
initial points are located:

y (3.4) W ey

Vv,
9 (12)
(0.0 X
v=(3-0,4-0)=(3,4)  w=(4-16-2)=(3,4)
V=w

Position vectors

If the initial point of a vector is at the origin, it is called the position
vector for the terminal point.

y P(3,4) (+6)
(1.2)
(0.0) X

Vectors v and w are equivalent, but vector v is also a position vector for
point P.



Finding a vector from 2 points

Ex) Find the vector from (1,2) to (5,4)

y B
~ (5.4) AB=(5-1,4-2)
AB —a
AB=(4,2)
(1,2)
A
x
Vector Addition

Adding two vectors is the equivalent of moving along the combined
paths of both vectors to the new terminal point.

Geometric Algebraic
y FZ(S’W (8.5) a=(3,4)
- b=(51)
1 a+b a+b={(3+54+1)
(0,9) x a+b=(8,5)

Placing one vector's tail to the
other's tip results in a new
terminal point for the addition
vector
the 'triangle law'
Vector Addition is commutative

Reversing the order of the vectors being added gives the same result:

Geometric Algebraic
-—
y b =(51) y (55) a=(3,4)
b={(51
> o (5.1)
a+b=(3+54+1)
i x b+a=(5+3,1+4)

the 'parallelogram law'
the sum is also the diagonal of the parallelogram

Multiplying a vector by a scalar
Multiplying a vector by a scalar (number) multiplies all components by that
value, and scales the size of the vector...

%
a=(12)
3a=3(1,2)
3a=(3,6)

...which changes its length, but not its direction.



Negative vectors
However, if the scalar is negative, it changes the direction 180%

a=(1,2)

-3a=-3(1,2)

a40.2) —3a=(-3,-6)

...which changes its length, but not its direction.

Vector Subtraction
Subtracting a vector is equivalent to adding a vector multiplied by -1:
Geometric Algebraic

a-b={3,4)+(-5-1
, a-b=(34)+(-5-1)
a-b= ( ,3>
2464 a-b o . ,
subtraction is also geometrically equivalent to
x combining vector 'tail-to-tail' (drawn from b to a)

Colinear vectors
Vectors are called colinear if they are along the same line, which means that
the vectors are scalar multiples of each other.

y
- -
b =(4.5.6) b =(3.6)
—_
a =(3.4)
X x
Compare scale factors for x and y components Compare scale factors for x and y components
4.5 6 3 6
3 4 3 4
- - . . .
b is a scalar multiple (1.5) of a there isn't a single scalar multiple

¢ S -
so these vectors are colinear so b is not a scalar multiple (1.5) of a

and these vectors are not colinear



Unit vectors

Unit vectors have a magnitude = 1
Ex) Find a unit vector?in the direction of\_/\
v=(3-0,4-0)=(3,4)
M=V3 +4 =5
divide by the length...
-_(34)

U=—"

§

-56:4)

24

All these ideas are extendable into any number of dimensions

R? R?

vector addition
a+b={(1,4,3)

Y  vector addition

a1
unit vector in the direction unit vector in the direction
of the sum vector of the sum vector

Basis vectors

When unit vectors are in the direction of the axes, they are called basis
vectors, and are sometimes given special symbols:




Other notation for vectors using basis vectors
Many textbooks, including ours, use an alternate notation for writing a

vector:
R* R’
v =(32) v =(32,4)
- -— - -—
V =3i+2j T =i+ 2]+ 4k

You need to know both of these methods, but we'll stick to the brackets in
this class (a clearer notation).

(3,2,4) Angle brackets denote a vector

(3,2,4) Curved parentheses denote a point

Properties of vectors
PROPERTIES OF YECTORS If a, b, and ¢ are vectors in V, and ¢ and d are

then

l.a+b=b+a 2.at+(b+c)=(a+b)+e
3.a+0=a 4. a+(—a)=0

5. c(a+b)=ca+ch 6. (c +d)a=ca+ da

7. (cd)a = c(da) 8. la=a

Applications of vectors
Things to know...

e Rewrite all vectors in component form (make sure angle is from standard position):

._)
V= (|V\c036’,

V]sin®)

[V|cos@

e If objects are not moving, then the sum of all force vectors = 0.
Z H (horiz components) =0
Z 4 (vert components) =0
e Weight is a force (not mass): F=ma, W=mg
e Units: i W g
Imperial slugs Ibs 32.2 ft/sec?
metric kg N  9.81 m/sec?



Examples

32. Ropes 3 m and 5 m in length are fastened to a holiday decora-
tion that is suspended over a town square. The decoration has a
mass of 5 kg. The ropes, fastened at different heights, make
angles of 52° and 40° with the horizontal. Find the tension in
each wire and the magnitude of each tension.

40°
52°

3m S5m



A boat heads straight across a river at a speed of 4 mph, but the water in the river is flowing
a 2 mph (as in the figure). What is the resultant and direction of the boat?

f /
12 mph/
AAAS H ’ AAAS
4 mph resultant motion

7




34. The tension T at each end of the chain has magnitude 25 N.
What is the weight of the chain?

\\
N
37° 7\\

ol >
'\(;,.“ i {;’
R o -



12.3: Dot Product

We've talked about how to add and subtract vectors and multiply a

vector by a scalar. How do we multiply two vectors together?
There are two different ways:

Dot product Cross product
A dot product example...
— - - -—

a® p a x p "
the result is a scalar (number) the result is a vector a=(1,-2, 0)

(covered in the next section e
b=(3, 2, 4)

Dot product is defined to be... —F P
Y a e b =

2 ® b =(a,a.a)e(b,b,b)=ab+ab, +ab,

Dot product is also known as the 'scalar product’ or 'inner product’
Properties of the Dot Product

[2] PROPERTIES OF THE DOT PRODUCT If a, b, and c are vectors in V3 and c is a

scalar, then
I.a-a=|al 22a*b=b-a
3.a‘(b+c)=a-b+a-c 4, (ca)*b=c(a-b)=a- (ch)

5. 0-a=0

The dot product has properties similar to those for multiplying real
numbers.

Dot product can be used to find the angle between 2 vectors

Given the definition of dot product, using the Law of Cosines and properties
of the dot product it can be proved that (see textbook for proof):

aeb =|?| |B‘| cos(0) and [cos(@)= 2 b

- -
where 0 is the angle between the vectors | a | | b |

Dot product can be used to test whether vectors are perpendicular

If two vectors are perpendicular, the angle between them is 90°.

Zeb =|?| |F| cos(90°)
E\' B‘ =0

when the vectors are perpendicular.

—

—
b b b
-—
Fy z \9/' a
0 a 0 a
- - - - -
a ® p s positive ae®eph =0

e - .
a ® b s negative
(To show whether vectors are parallel, test is one is a scalar multiple of the other)



Geometric interpretation of dot product

—-—
If u is a unit vector:
Uueb= ‘u”b’cos@ = (1)‘1)‘0059
ush :‘B‘cosﬂ
-— -—
...then the dot product of b and u

-- represents the compone_p_:c of the '5‘
vector that points in the u direction.

) P
For a non-unit vector, a:

—

b

cos@

a-b=‘a

...and the dot product still represents

the componeqt of the B vector that

points in the a directign, but multiplied
a by the magnitude of a.

That means the length of the projegtion of?
- onto a (called the 'component of b in the
a*b direction of @ or the 'scalar projection of b
onto'a") is given by:

By dividing the dot product by the magnitude of a vector you are
finding the scalar projection of the other vector onto that vector.



Vector projection of one vector onto another vector

The scalar projection of b ontois a scalar (number)
representing the length of B'in the direction of 2. If you_g:multiply
this scalar projection by a unit vector in the direction of a...

-
b

o)

I? e }l |.I11
(@ vector

A 2D example...

Find scalar projection of?onto_b'

. | aeb|a
proj-b= aﬂ i
T

...you get a vector cal!gc_i the vector
projection of B onto @ which represents

the component of i& the direction of 2
(with the direction of @ preserved).

Find scalar projection of T:fonto_a'

Find vector projection of_a’onto-t-a'

A 3D example...

Find scalar projection of a onto b

2 5 s — —
Find vector projection of b onto a

Find vector projection of a onto b




Physics application of dot product: Work

In physics, work is defined as the product of the component of a force applied to an
object in a direction and the distance the object is moved in that direction.

Work — comp,; D= (

I cos())l)“ =FeD

y
Examples...

X
Find the work done if a 10 Ib force is exerted on a block

by a rope which pulls the block horizontally 2 ft...

Find the work done if a 10 Ib force is exerted on a block by a rope
(force vector)

which pulls in a direction 42° above the horizontal and moves the
block 2 ft.

3
F- 10,0 O F =(10cos42°, 10sin42°)
Olbs /
Ez..g?? s =(7.431,6.691)
3 - ) ft :
D 2,0 >
(displacement D=(2,0
vector) )
3y > ; -2 —> . ,
Work = F « D =(10,0) e (2,0} Work = F o D =(7.431,6.691) (2,0,
=(10)(2)+(0)(0) =(7.431)(2) +(6.691)(0)
=20 ft—Ibs

~14.862 fi — Ibs



Direction Angles and Direction Cosines

z The angles between a vector and the
axes are called direction angles:
]/ (a,,a,,a,) x-axis: alpha «a
M’ y-axis: beta g
P y z-axis: gamma )
a
...and the cosines of these angles
g are called the direction cosines.
Because:
L A L
cos - e -
- e B B 1
21131 51171 a()  d
which is equivalent to the x-component of a unit
vector in the direction of a.
. ze7 (al,az,ag)-0,0,0) _a
X COS(OC): T = al(l) = ‘5,|
51171
(ai,az,a:,}
Y ..meaning the direction cosines are the
)3 components of the unit vector in the direction
y of &
o

= _{a r‘ = (cosa,cos f,cos 7)



12.4: Cross Product

We've talked about how to add and subtract vectors and multiply a
vector by a scalar. How do we multiply two vectors together?

There are two different ways:

Dot product Cross product
— — -— -—
a e p a X p
the result is a scalar (humber) the result is a vector

(covered in the last section)

Dot product is defined Cross product is
for 2D, 3D+ defined only for 3D

Multiplying two 3D vectors to form the cross product creates a new
vector which is perpendicular to both original vectors...

...and whose direction is found
Txb using the right-hand-rule:

Z

Thumb in
cross-product direction

2nd finger
1st finger in 2nd vector direction

in 1st vector direction

Definition of how to find the components of the cross-product vector:

[f:;:(al»azsaﬁ and B‘=<b|,b2,b3>

- -—
then axb =(ab—ab, ab-ab, ab, —azb,>

But in practice we use an equivalent determinant to compute cross-product:

(+) () (+)

— — —

ik
- B"_a - a_az a:;‘.'_al @ q, aZIE
ax B b, b, b b / b b,
b b b
4 % aq a4 9 G
- b, b b b |b b,




Ex: Given a=(l,1,—1) b =(2,4,6)

Find gxg_. o
N R
54 | 46l 26 2 4
=(M©)-(D®). -[WE)-CDE)] O@-0E)
=(10, -8, 2) ,
b
axb
y

Physical interpretation of cross-product:
It can be shown (proof is in the textbook) that:

5 x3] =[3][2]sn(@)

Which means that the magnitude of the cross-product corresponds to the
area of the parallelogram formed by the two original vectors.

area of the parallelogram = lgx bl = |§| |F| sin(@)

Showing vectors are parallel or perpendicular:

Since any two parallel vectors would form a parallelogram with zero area...

- —_
P . a
a (align initial points) ” zero parallelogram area
— b
b

If the cross-product of two vectors is zero, the vectors are parallel.

And recall...

If the dot-product of two vectors is zero, the vectors are perpendicular.




A related physical relationship: the Scalar Triple Product

If you have three, 3D vectors, you can form the Scalar Triple Product:
=27 )

’ ,l

/ | -

a .(B‘XE“)|

The magnitude of the Scalar Triple Product
gives the volume of the parallelepiped.

If the Scalar Triple Product for 3 vectors is zero, that means the 3
vectors must all lie in the same plane.

The Vector Triple Product

S —_—
There is also a Vector Triple Product: a x (hxc )

The vector triple product produces a vector which is in the plane
containing p and c but is also perpendicular to a

...but it is used less frequently. Usually, if people say 'triple product'
they mean the scalar triple product.

Properties of the Cross Product

8 THEOREM If a. b, and ¢ are vectors and c is a scalar, then
l.aXb=-bXa

(ca) X b=c(aXb)=a X (ch)
axX(b+c)=aXb+aXc
(@a+b)Xc=aXc+bXec

a*(bXc¢)=(@XDh)-c

ol R

(bXe¢e)=(a*c)b—(a+*b)e

You can distribute scalar numbers with vectors in cross-product
multiplication, but reversing the order of two vectors in a cross-product
produces a 'negative' vector (in opposite direction).



Physics application of cross product: Torque

In physics, when a force is applied with a 'lever arm' such that it causes rotation
around a central point, the force times lever arm distance is called torque, and is
formally defined as the cross-product of the position and force vectors:

S Where 7 is the position vector starting at the
Torque, t=rx F pivot point and ending where the force is
applied.
applied force » S L
e & |z":|er|=|r||F|sin9
o\

applied force

causing rotationl}_?lsina Notice that the magnitude of torque is

only influenced by |F|sin @

which is the component of F

perpendicular to r which causes
rotation.

position vector
(lever arm)

torque vector
I RN
Physics application of cross product: Torque

Ex #40. Find the magnitude of the torque about P if a 36-Ib force is
applied as showrl.4 ft
P

P 4ft

36 Ibs D\
we can solve using the right side of the equation... ...or the left side...
= - . ot b —>» —» —>
r|:|er|:|r F‘sinﬂ r|=|r xF
= (\/3_2)(36)sin105° ?:(J?Ecosns",J3723in315°,0>=(4,—4,0)
~196.7 fi —Ibs il

= (36005210°, 36sin 210°,0) = (-31.1776, -18,0)

+ -+

—4  0|=(0-0,—(0-0),-18(4)—4(31.1776))
-31.1776 —18 0

-+
r

xF= 4

- — —» —> >
r xF=(0,0,-196.7) |z|=|r xF
Newton's laws of motion give us this equation for how force creates linear
motion:

= 0 +0° +(-196.7)" =196.7 fi —Ibs
F=ma

...and you can think of 'mass' as the aspect of an object which is resisting the

change the force is applying...the larger the mass, the smaller the amount of
linear acceleration for a given force.

The magnitude of torque corresponds to a rotational force and there is a
similar equation for rotational motion:

r=Ia

...where the torque is the rotational force and alpha is the angular acceleration
(how fast the rotational speed is changing). /is the 'moment of inertia' which

corresponds to mass for rotation - it is the aspect of an object which resists
rotation in the same way mass resists linear motion.

There can be multiple force or torque vectors acting on a body which is free
to move. By using vectors, the effects in each linear direction or in each
direction of rotation are automatically combined appropriately.



12.5: Equations of Lines and Planes

Lines in 3D
in 2D... in 3D...

z

Po (%0,¥0)

(y~y0):m(x~x0)

X

In 2D, to define a line we In 3D, to define a line we
need a point on the line and need a point on the line and
the slope. the direction of the line in 3D.

Direction can be represented
by a vector parallel to the
line, v

Lines in 3D - Vector equation of a line
There are two forms for defining a line in 3D: the vector equation and parametric

equations. For the vector form, we start by defining two points on the line, Py (the
known point on the line) and P (any other point on the line at an arbitrary position).

We then defin_g positi_g_n vectors to each of
these points, ro_gnd r. We can then define
another vector, a between the points.

Po (xo.Yo.ft0)

Using vector addition:

—_ -
r =1r +a

.
But because T; is parallel to the direction vector v
— —a
there is a scalar tsuch that: @ =tv
which means we can write:

=3 = -
F =r +tv

This is called the vector equation of a line.

Lines in 3D - The parameter,

The scalar constant t is called the parameter, and varying the parameter will
cause the arbitrary point P to move along the line.

z (t=2)
P2 (X3,y2,22)

(In AP Calc BC, do you remember
talking about the bug crawling
along the line?)

The position of the point on the line when {=0 is arbitrary and
depends upon which point we decided to use to define the line.

X The position vector for any point on the line is given by the vector
equation for the line by providing a value for parameter ...

o - -
r =ty +tv i<y

...using all the values from —coto oo to sweep through the entire line.



Lines in 3D - Parametric Equations of a line
If we write the vector equation of line in component form...

v_ - —0 <t <0

r =1rp +t
(%,9,2) = (X, %, 20 ) +1{a,b,C)
(x,y,z) = <x0 +ta, y,+th, z,+ !c>

...because two vectors are equal when their components are equal, this gives
three scalar equations:

xX=x,+at
y=y,+bt —o<t<w

z=2z,+ct

These are called the parametric equations of a line.

Lines in 3D - Direction numbers and symmetric equations
Direction numbers...

. T;" —00 < <00

r = r +t

(x,3,2) = (%0 Y0, ) ”(fﬁf)

The component of the direction vector, a, b, and ¢, are called the
direction numbers of the line.

Symmetric Equations...

If you start with the parametric equations of a line, and solve each for the

parameter . X=X, +at

X=X Y=V _272%

a b c

— =

y=y,+bt
z=z,+ct
These resulting equations are called the symmetric equations of the line.

If a direction number is zero, for example, b = 0, then that equation is
written in the form:

b=0, soy=y,+bt=y, |y=y,




Lines in 3D - example questions
Find equation of a line given a point and a direction vector.

Find a vector equation and the parametric equations of a line passing
through (3,-1,4) and parallel to the vector <-2,1,6>.

Find equation of a line through 2 given points

Find a vector equation and the parametric equations of a line passing
through (6, 1, -3) and (2, 4, 5).

Note: because the choice of point for Py and proportion scale factors
for a,b,c are arbitrary, there are many possible valid equations.

Find equation given one point and related in some way to other lines

Find a vector equation and the parametric equations of a line passing
through (2, 1, 0) and perpendicular to both i+j and j+k.



Other ways to use these techniques...

Is the line through (-4,-6,1) and (-2,0,-3) parallel to the line through
(10,18,4) and (5,3,14)?

Lines in 3D - Parametric Equations of a line segment

What if only need a line segment instead of the whole line? Usually, this would be
defining equations for a line segment between 2 given points, Py and Py:

z If given points occur when t=0 and t=1, then the
(t=1) direction vector is just between Py and Py :

;=<x1 X Vi~ Yoo & _ZO>

...and the vector and parametric equations become:
(X, 3,2)= (%9, Ygs 20 ) (% — X Vy— Vs 2 — 2 )
x =X, +1(x =Xy ) =xg +0 — g =(1—1) x, +1x,
Y=% +t()’1 *yo):yo iy, b, :(lft)yo +1y,

z=2z, +t(z1 —ZO)=ZB + 5~y :(l—l)z0 + 1z,

;‘z(l_tﬁgﬂf; 0<r<l

Lines in 3D - example questions

Find equation given one point and related in some way to other lines

Find parametric equations for the line segment from (10,3,1) to (5,6, -3).



Equations of Planes

A line is defined by 1) a point on the line and 2) the direction vector of the line.

A plane is also defined by 1) a point on the line and 2) the direction vector for the

lane.
P % z

7={a,b,c)

b
/ — £ =(xo,J’nszu) y
X X
We can't use a vector in the plane to The only way to get a unique vector is
define it's direction (there are many of to use a vector normal to the
them) plane...this vector, n, defines the

plane's direction.

If we define another generic point, P(x,y,x), on the plane, direction vectors T and Ty
are shown...,

—
r—

We can then define vector T”’ which lies

in the plane.

This vector is therefore perpendicular to
the normal vector, which means its dot-
product is zero:

Flbl(?ﬁ?)=0

(=]

Either of these is called the vector
equation of the plane.

However, in practice, we usually write the
equation of a plane in a different form...

Starting from the vector form equation, if we expand each vector into its

components: 3, ,,_7;):0

<a=b:c> .<(x_xﬂ’y_y0’z_zﬂ))= 0

a(x—x,)+b(y-y,)+¢(z-2,)=0

ax—ax, +by—by, +cz—cz, =0
ax+by+CZ:axo+by0+CZO

. - ==
and since n=<a,b,c> and r, =<xoayoszo>

— —
ax+bytcz=n-er,

which is called the scalar equation of the plane through Py
and is the version we more typically use.

Notice the left side constants are the direction numbers for the normal
vector, and the right side is a number (set by the point the plane is going
through along with the direction).



Equations of Planes vs. Lines

Something important to notice...

For planes, the equation of the plane is
defined by a point on the plane and a vector
which is perpendicular to the plane:

For lines, the equation of the line is defined by
a point on the line and a vector which is in the
direction of the line:

Py (Xo. Yo o)




Equations of planes - example questions

Find an equation of the plane for the plane through the point (6,3,2) and
perpendicular to the vector <-2,1,5>,

Find an equation of the plane for the plane through the point (-2,8,10) and
perpendicular to the line x=1+t, y=2t, z=4-3t.



Find an equation of the plane for the plane through the points (2,-4,6),
(5,1,3) and (0,1,2).

Distances in 3D

Distance between two points:

D:\](xl _xz)z +(y1 _yz)z"'(zl _22)2

Distance between a point and a plane:

For a plane defined by: ax+by+cz=-d
so ax+by+cz+d=0

The distance between point P4(x4, y1, Z1) and the plane is given by:

|ax +by, +cz +d‘
D: 1 1 1
Ja' +b* + ¢

(This is derived in section 12.5 in the textbook, if you're interested.)




12.6: Cylinders and Quadric Surfaces

First, a quick review of conic sections and how to sketch them...

A conic section is a 2D curve which is the intersection of a plane with a cone...

\/W

\ 4
o '

A

W
o

Hyperbola

Circle Parabola Ellipse
© - X

...and all have equations of the general form:
A +Bxy+ Oy +Dx+Ey+F =0

If the xy term is present, the conic section is not aligned with the x-y axes (is rotated)
We will not consider this case (it is solved with a rotational coordinate transformation)

Parabolas

" directrix: y=0

A\

(x=2) =4(y-1)

directrix; x=

b | —

® focus! (14112, 2)

(y=2) =2(x-1)

p =distance from vertex fo focus
and from vertex to directrix

Standard form:

=AY =nn<)
(} k 4p{x h]

X7 (like y=x7)

Geometrically, all points on a parabola are
equidistant from focus and directrix...
directrix

dishes, flashlights, etc.)

same time at the

...which makes this shape perfect for focusing energy (antenna

all elements of a wavefront arrive at the

focus

Parabola examples

(x—h) =4p(y—k)
(v-k) =4p(x—h)

p =distance from vertex to focus
and from vertex to directrix

x*—6x—8y—-7=0 4x—y*—2y-9=0




major axis

Ellipses

vertex: (1, 1)
focus : I:l. ~2+4 \.-"SJ'|

focus: (1-+/5,-2
& :

center: (1, -2)

focus : [1 + /5,2

center: (1, -2)

vertex: (-2, -2)

focus: “ 2

PN

ik

J5)

I vertex: fT. -5) 2
(x-1)'  (+2)' | (==1)
bigger denominator = longer direction 4 9 9

- TIEOT AXI5
vertex: (4, -2)

Standard form:

P =it =P

&

¢ =distance from center to foci vertical major axis

horizontal major axis

fax c
eccentricily =e =—
a

e=1is a circle,
higher e = more oval

Geometrically, the sum of the distances from a point

on an ellipse to each focus is constant: object being orbited which is at a foc

close to circular):

Circles Circles are special cases of ellipses where a = b:

In astronomical orbits, the object follows an elliptical path around the

us (although the ellipse is usually

mooen

() 0k,

a a

(x—h) +(y—k) =& r

A

r

center: (1J-

(x=1) +(y+2) =9

Standard form: (x—a)’ +(y—k)’ =+

Ellipse/Circle examples (x—h)

a

~kY
+ (ybz ) =1
horizontal major axis

2 2
EEnNeE
a

vertical major axis

c=a

¢ =distance from center to foci

e

—_— <
eccenlricily =e =—

Ox* +4y" —36x+8y+4=0 20 +2y* +12x 16y +40=0




y, asymptotes
\

Hyperbolas

W

-r-

7

71:
T

vertex: (:1= 2)
transverse axis

transverse axis

focus: (I*x}ﬁ,*2] I "'
/ Elaad
f center: (1 2‘)\
& A
(x-1)" _(r+2)’
opens in direction of positive term 4 9 =il
Standard form: (x=n) (=&)Y _
F=a+b* a B

horizontal transverse axis

¢ = distance from center to foci b
asymptotes: (y—k)=+—(x—h)
a

vertical transverse axis

asymptotes: (y —k)= 1%(:: —h)

Geometrically, the difference of the distances from a
point on a hyperbola to each focus is constant. ..

...this is useful in location detection systems. If two points receive a signal
and the delay between the times received is known, a hyperbola traces out
the locus of all possible points where the emitting object might be.

‘f
\ y 7 If you have a 2nd set of two
detectors, the location is at the
£ o/ X s intersection of the two hyperbolas
[ Pe o// from the two pairs of detectors.
///
/e
N
Hyperbola examples
2 2
O b () W ) N ) S CTE ) ,
2 2 = . Y=g
c =distance from center to foci 4 b . 4 9 ) agyapiones: (=) ia(x 4)
horizontal transverse axis  vertical transverse axis

16x% —4y? +32x+16y—64=0

9x®> —4y® —18x—16y+29=0




Quickly recognizing which conic section from the equation

x*—6x—-8y—7=0
9% +4y” —36x+8y+4=0
9x% —4y® —18x—16y+29=0

4x—-y*-2y-9=0

16x* —4y* +32x+16y—64=0

207 +2y" +12x 16y +40=0

Parabola

(x=h)* =4p(y=k)

(v=k)* =4p(x—h)

x* like y= x?
y? ‘other one'

p = dist. vertex to focus

One squared term = parabola

Two squared terms, same sign = ellipse
Two squared terms, different signs = hyperbola
One squared term = parabola

Two squared terms, different signs = hyperbola

Two squared terms, same sign = ellipse, but coefficients of
squared terms are same too, so circle

Ellipse Hyperbola
(x=h)  (v=k)' _, (x=h)' _(=k)' _,
a’ b a b’
(.\'-‘h)’ i (_1-‘-11()' 1 [_v-‘k)' _(.‘c—ﬂh)' _1
b- a: a b*
a is always bigger, a not always bigger,
a under term of major axis a always under first term

first term is transverse axis

¢t =a’-bh* =at+ b

and dist. vertex to directrix

a = dist. center to vertex
¢ = dist. center to focus

b = dist. center to point b = dist. to ‘other side of box’

on minor axis

asymptotes from center
through corners of box:

(yv=k)= iﬁ(x-—k)
a

(_\'-k)::l:%(x-iz)

(look at box to see which)

35 C
eccentricity e=—
a



A convenient web-based 3d graph application...
https://www.geogebra.org/3d?lang=en

Cylinders
inRR.. inR..
In 2D, this equation... In 3D, this equation...
X*+y'=4 X +y' =4
...represents a circle: ...represents a circular cylinder...
b4

3 57 n—/ — X

X

...because z is a variable, and it is
unspecified, it can be anything so the circle
in the x-y plane is extended up and down in
the z direction.
Depending upon which variable is not included, the circular cross-section
may be extended in any variable axis:

X +y'=4 +z =4 yi+zi=4

These 'cross-sections' of the intersection of the surface with the x-y, x-z, or
y-z planes are called traces.

Cylinders are named for the type of curve which defined their cross-section:

Circular Cylinder Elliptical Cylinder Parabolic Cylinder

¥’ +y' =4 x*+2y° =4 Py

Zz




Quadric Surfaces

A quadric surface is the graph of a 2nd-degree equation in 3 variables (3D version of conic
sections), and are named for the trace curves:

Surface

Ellipsoid

Equation

L
S+t —m]
a’ b* c*

All traces are ellipses.

Ifa = b = ¢, the ellipsoid is
a sphere.

Ellipsoid: 3 squared terms on left side, all
positive, constant on right

Surface
- 1
Elliptic Paraboloid

Equation [

x* Iyt
. <
a* b’

L LY

Horizontal traces are ellipses.
Vertical traces are parabolas,

The variable raised to the
first power indicates the axis
of the paraboloid.

Elliptic Paraboloid: 2 squared terms (both
positive), term on other side is not squared. The
non-squared side is the direction in which it

'opens'.

Surface

Hyperboloid of One Sheet

Hyperboloid of One Sheet: 3 squared terms with

Equation

x .9y

e T AR ]

a* b
Horizontal traces are ¢lli
Vertical traces are hyper
The axis of symmetry
cormresponds to the variablg
whose coefficient is nega

—i

Surface

l-'.qu;umn

z 22 2
= T T )
C a’ b*

Horizontal traces are clli
Vertical traces in the planes
x=kandy = kare
hyperbolas if k # 0 but are
pairs of lines if & = (.

Cone: 3 squared terms, all positive, but no
constant and one term on other side of

equation.

Surface

Hyperbolic Paraboloid

Equation ]

Horzontal traces are
hyperbolas.

Vertical traces are parabolas.
The case where ¢ < 0 iis
illustrated.

Hyperbolic Paraboloid: 2 squared terms (one

negative), term on other side is not squared.
The plane with the squared variables (here x-y)
is the plane of the hyperbolic traces.

Surface

Hyperboloid of Two Sheets

Hyperboloid of Two Sheet: 3 squared terms with

| Equation

Horizontal traces in = = k
I cllipses if k > cork < =
| Vertical traces are hype

The two minus signs ind
two sheets.

constant on other side, but one term is negative.
The plane with the positive terms (here x-y) is
the plane of the elliptical traces.

constant on other side, but twos terms are
negative. The plane with the negative terms
(here x-y) is the plane of the elliptical traces.



Cylinders and Quadric Surfaces !
Match and name each:

#21. x*+4y" +92° =1
#22. 9’ +4y*+27 =1

#23. x*—y*+z =1

#24. —x*+y* -2 =1 3
#25. y=2x*+2°

#26. Yy’ =x"+72°

vii Vil

#27. x*+2z* =1

#28. y=x*-z*

Name each:

#11. x=y>+47 #16. 4x° +9y*+z=0

#12. 9%’ —y*+2° =0 #17. 36x* +y* +362z° =36
#13. x* =y*+47° #18. 4x°>—-16y*+z° =16
#14. 25x* +4y* +2z° =100 #19. y=z"-x

#15. —x*+4y" -z" =4 #20. x=y"' -2



Sketching Quadric Surfaces
To sketch, draw traces in the xy, yz, and xz planes...
ex: x*+2z°—6x—y+10=0

First group variables and complete the square:
(x*—6x)—(y)+2(z)" =-10
(x* - 6x+9)-(¥)+2(z)" =-10+9
(x=3) = (¥)+2(z)’ =1
(x-3)" +2(z)" =(y-1)

2 squared terms, both positive, other term on other side not squared, should
be an elliptic paraboloid.

Now consider each plane and let the other variable equal constant, k, to draw traces:
xy (let z=k) xZ (y=k) yZ (x=Kk)
(x=3)" +2(k)" =(y-1) (x=3) —(k)+2(z) =1 (k=3) ~(p)+2(z) =-1
y=(x-3) +2k" +1 (x-3) +2(z)} =k~-1 y=2(z) +(k=3) +1
k=0: y=(x=3)"+1 k=0: (x-3)"+2(z-0)’ =—1(nocurve) ~ k=0: y=2(z)*+10
k=1: y=(x=3)"+3 k=1: (x-3)"+2(z—0)" =0 (a poinr) k=1: y=2(z)’+5

2
k=2: )};=(x—3) +9 k=2: (x-3) +2(z—0) =1 k=2: y=2(z)" +2

k=3: (x-3) +2(z-0)"=2 y

4 k=

k=3 il

(2
3 0 -k= x g’
-4 ] X k=2 b4

(this is very difficult to do by hand...most people use 3D graphing software)



Sketching Quadric Surfaces
You try one...draw traces for each plane and try to sketch the 3D object:

4x* -16y* +2z° =16



