Calc III - Ch 16 - Required Practice

16.1 and 16.2 day 1

\#1. Sketch the vector field for $\vec{F}(x, y)=\langle 1, x\rangle$
\qquad
\#3. Evaluate the line integral, where C is the given curve:
$\int_{C} x y^{4} d s \quad C$ is the right half of circle $x^{2}+y^{2}=16$
\#2. Evaluate the line integral, where C is the given curve: $\int_{C} y^{3} d s \quad C: x=t^{3}, y=t, 0 \leq t \leq 2$
\#4. Evaluate the line integral, where C is the given curve: $\int_{C} x y d x+(x-y) d y$ where C consists of line segments from $(0,0)$ to $(2,0)$ and from $(2,0)$ to $(3,2)$.
\#5. Evaluate the line integral, where C is the given curve: $\int_{C} x e^{y z} d s$ where C is the line segment from $(0,0,0)$ to $(1,2,3)$.
\#1. Let \vec{F} be the vector field shown in the figure.
(i) If C_{l} is the vertical line segment from $(-3,-3)$ to $(-3,3)$, determine whether $\int_{C_{1}} \vec{F} \cdot d \vec{r}$ is positive, negative, or zero.
(ii) If C_{2} is the counterclockwise-oriented circle with radius 3 and center at the origin, determine whether $\int_{C_{2}} \vec{F} \cdot d \vec{r}$ is positive, negative, or zero.

\#2. Evaluate the line integral $\int_{C_{1}} \vec{F} \cdot d \vec{r}$ where C is given by the vector function $\vec{r}(t)$

$$
\begin{aligned}
& \vec{F}(x, y)=\left\langle x y, 3 y^{2}\right\rangle \\
& \vec{r}(t)=\left\langle 11 t^{4}, t^{3}\right\rangle \quad 0 \leq t \leq 1
\end{aligned}
$$

\#3. Find the work done by the force field $\vec{F}(x, y)=\langle x \sin y, y\rangle$ on a particle that moves along the parabola $y=x^{2}$ from $(-1,1)$ to $(2,4)$.
\#4. Show that a constant force field does zero work on a particle that moves once uniformly around the circle $x^{2}+y^{2}=1$.

16.3

\#1. Determine whether or not \vec{F} is a conservative vector field. If it is, find a function f such that $\vec{F}=\nabla f$.
(i) $\vec{F}(x, y)=\langle 2 x-3 y,-3 x+4 y-8\rangle$
\#2. The figure shows the vector field $\vec{F}(x, y)=\left\langle 2 x y, x^{2}\right\rangle$ and three curves that start at $(1,2)$ and end at $(3,2)$.
(i) Explain why $\int_{C} \vec{F} \cdot d \vec{r}$ has the same value for all three curves.
(ii) What is this common value?

(ii) $\vec{F}(x, y)=\left\langle y e^{x}+\sin y, e^{x}+x \cos y\right\rangle$
\#3. Find a function f such that $\vec{F}=\nabla f$ and use it to evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ along the given curve C.
$\vec{F}(x, y)=\left\langle x y^{2}, x^{2} y\right\rangle$
$C: \vec{r}(t)=\left\langle t+\sin \left(\frac{\pi}{2} t\right), t+\cos \left(\frac{\pi}{2} t\right)\right\rangle 0 \leq t \leq 1$
\#4. Show that the line integral is independent of path and evaluate the integral.
$\int_{C} \tan y d x+x \sec ^{2} y d y$
C is any path from $(1,0)$ to $\left(2, \frac{\pi}{4}\right)$
\#5. Find the work done by the force field \vec{F} in moving an object from P to Q.
$\vec{F}(x, y)=\left\langle 2 y^{3 / 2}, 3 x \sqrt{y}\right\rangle$
$P(1,1), \quad Q(2,4)$
\#6. Is the vector field shown in the figure conservative? Explain.

16.4

\#1. Evaluate the line integral (i) directly and (ii) using Green's Theorem.
$\oint_{C}(x-y) d x+(x+y) d y$
\#2. Use Green's Theorem to evaluate the line integral along the given positively oriented curve. $\oint_{C} x y^{2} d x+2 x^{2} y d y$
C is the triangle with vertices $(0,0),(2,2)$ and $(2,4)$.
C is the circle with center at the origin, radius 2.
\#3. Use Green's Theorem to evaluate the line integral along the given positively oriented curve.
$\oint_{C} y^{3} d x-x^{3} d y$
C is the circle $x^{2}+y^{2}=4$.
\#4. Use Green's Theorem to evaluate $\int_{C} \vec{F} \cdot d \vec{r}$.
(Check the orientation of the curve before applying the theorem)
$\vec{F}(x, y)=\left\langle\sqrt{x}+y^{3}, \quad x^{2}+\sqrt{y}\right\rangle$
C consists of the arc of the curve $y=\sin x$ from $(0,0)$ to $(\pi, 0)$ and the line segment from $(\pi, 0)$ to $(0,0)$.
\#5. A particle starts at the point $(-2,0)$, moves along the x-axis to $(2,0)$, and then along the semicircle $y=\sqrt{4-x^{2}}$ to the starting point. Use Green's theorem to find the work done on this particle by the force field

$$
\vec{F}(x, y)=\left\langle x, \quad x^{3}+3 x y^{2}\right\rangle .
$$

16.5

\#1. Find (i) the curl and (ii) the divergence of the vector field $\vec{F}(x, y, z)=\left\langle x y z, 0,-x^{2} y\right\rangle$
\#2. Find (i) the curl and (ii) the divergence of the vector field $\vec{F}(x, y, z)=\langle\ln x, \ln (x y), \ln (x y z)\rangle$
\#3. The vector field \vec{F} is shown in the $x y$-plane and looks the same in all other horizontal planes (its z-component is zero).
(i) Is $\operatorname{div} \vec{F}$ positive, negative, or zero? Explain.
(ii) Determine whether $\operatorname{curl} \vec{F}=\overrightarrow{0}$. If not, in which direction does curl \vec{F} point?

\#5. Let f be a scalar field and \vec{F} a vector field. State whether each expression is meaningful. If not, explain why. If so, state whether it is a scalar field or a vector field.
(i) $\operatorname{curl} \vec{F}$
(ii) $\operatorname{div} \vec{F}$
(iii) $\nabla \vec{F}$
(iv) $\operatorname{div}(\nabla f)$
\#4. The vector field \vec{F} is shown in the $x y$-plane and looks the same in all other horizontal planes (its z-component is zero).
(i) Is $\operatorname{div} \vec{F}$ positive, negative, or zero? Explain.
(ii) Determine whether $\operatorname{curl} \vec{F}=\overrightarrow{0}$. If not, in which direction does curl \vec{F} point?

(v) $\operatorname{curl}(\operatorname{curl} \vec{F})$
(vi) $(\nabla f) x(\operatorname{div} \vec{F})$

16.6 day 1

\#1. Determine whether the points P and Q lie on the given surface.

$$
\begin{aligned}
& \vec{r}(u, v)=\langle 2 u+3 v, 1+5 u-v, 2+u+v\rangle \\
& P(7,10,4), Q(5,22,5)
\end{aligned}
$$

\#2. Identify the surface with the given vector equation.

$$
\vec{r}(u, v)=\langle u+v, 3-v, 1+4 u+5 v\rangle
$$

\#3. Find a parametric representation for the surface: the plane that passes through the point $(1,2,-3)$ and contains the vectors $\langle 1,1,-1\rangle$ and $\langle 1,-1,1\rangle$.
\#4. Find a parametric representation for the surface: the lower half of the ellipsoid $2 x^{2}+4 y^{2}+z^{2}=1$
\#5. Find a parametric representation for the
surface: the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that
lies above the cone $z=\sqrt{x^{2}+y^{2}}$.

16.6 day 2

\#1. Find an equation of the tangent plane to the given parametric surface at the specified point.
\#2. Find the area of the surface: the part of the plane $3 x+2 y+z=6$ that lies in the first octant.

$$
\vec{r}(u, v)=\left\langle u+v, 3 u^{2}, u-v\right\rangle
$$

$(2,3,0)$
\#3. Find the area of the surface: the part of the surface $z=x y$ that lies within the cylinder $x^{2}+y^{2}=1$.
\#4. Find the area of the surface: the part of the hyperbolic paraboloid $z=y^{2}-x^{2}$ that lies between the cylinders $x^{2}+y^{2}=1$ and $x^{2}+y^{2}=4$.

16.7 day 1

\#1. Evaluate the surface integral $\iint_{S} x^{2} y z d S$
S is the part of the plane $z=1+2 x+3 y$ that lies above the rectangle $0 \leq x \leq 3,0 \leq y \leq 2$.
\#2. Evaluate the surface integral $\iint_{S} y z d S$
S is the surface with parametric equations
$x=u^{2}, \quad y=u \sin v, \quad z=u \cos v$
$0 \leq u \leq 1, \quad 0 \leq v \leq \frac{\pi}{2}$.
\#3. Evaluate the surface integral $\iint_{S}\left(x^{2} z+y^{2} z\right) d S$
S is the hemisphere $x^{2}+y^{2}+z^{2}=4, \quad z \geq 0$.

16.7 day 2

\#1. Evaluate the surface integral $\iint_{S} \vec{F} \cdot d S$
(find the flux of \vec{F} across S):
$\vec{F}(x, y, z)=\langle x y, y z, z x\rangle$
S is the part of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the square $0 \leq x \leq 1,0 \leq y \leq 1$, and has upward orientation.
\#2. Evaluate the surface integral $\iint_{S} \vec{F} \cdot d S$
(find the flux of \vec{F} across S):
$\vec{F}(x, y, z)=\langle x,-z, y\rangle$
S is the part of the sphere $x^{2}+y^{2}+z^{2}=4$ in the first octant, with orientation toward the origin.
\#3. Evaluate the surface integral $\iint_{S} \vec{F} \cdot d S$
(find the flux of \vec{F} across S):
$\vec{F}(x, y, z)=\langle 0, y,-z\rangle$
S consists of the paraboloid $y=x^{2}+z^{2}, \quad 0 \leq y \leq 1$ and the disk $x^{2}+z^{2} \leq 1, \quad y=1$ with upward orientation.
\#4. Evaluate the surface integral $\iint_{S} \vec{F} \cdot d S$
(find the flux of \vec{F} across S):
$\vec{F}(x, y, z)=\langle x, 2 y, 3 z\rangle$
S is the cube with vertices $(\pm 1, \pm 1, \pm 1)$.

16.8

\#1. Using Stokes’ Theorem, write out and evaluate the single-integral which is equivalent to the surface integral which calculates $\iint_{S}(\operatorname{curl} \vec{F}) \cdot d S$ where $\vec{F}(x, y, z)=\left\langle x^{2} z^{2}, y^{2} z^{2}, x y z\right\rangle$
S is the part of the paraboloid $z=x^{2}+y^{2}$ that lies insides the cylinder $x^{2}+y^{2}=4$, oriented upward.
\#2. Using Stokes' Theorem, write out and evaluate the double-integral which is equivalent to the line integral $\int_{C} \vec{F} \cdot d \vec{r}$ which sums the contributions of the field \vec{F} along path C
$\vec{F}(x, y, z)=\left\langle x+y^{2}, y+z^{2}, z+x^{2}\right\rangle$
C is the triangle with vertices $(1,0,0),(0,1,0)$, and $(0,0,1)$.
\#3. Verify that Stokes' Theorem is true for the Double-integral side.... given vector field \vec{F} and surface S by writing out and evaluating integrals for both sides of the Stokes' Theorem equation.
$\vec{F}(x, y, z)=\left\langle y^{2}, x, z^{2}\right\rangle$
S is the part of the paraboloid $z=x^{2}+y^{2}$ that lies below the plane $z=1$, oriented upward.
\#3 (continued). Verify that Stokes' Theorem is true for the given vector field \vec{F} and surface S by writing out and evaluating integrals for both sides of the Stokes' Theorem equation.
$\vec{F}(x, y, z)=\left\langle y^{2}, x, z^{2}\right\rangle$
S is the part of the paraboloid $z=x^{2}+y^{2}$ that lies below the plane $z=1$, oriented upward.
\#1 Verify that the Divergence Theorem is true for the given vector field \vec{F} on the region E by writing out and evaluating integrals for both sides of the Divergence Theorem equation.
$\vec{F}(x, y, z)=\langle x y, y z, z x\rangle$
E is the solid cylinder $x^{2}+y^{2} \leq 1, \quad 0 \leq z \leq 1$.
\#1(continued) Verify that the Divergence Theorem
is true for the given vector field \vec{F} on the region E
Triple-integral side....
by writing out and evaluating integrals for both sides of the Divergence Theorem equation.
$\vec{F}(x, y, z)=\langle x y, y z, z x\rangle$
E is the solid cylinder $x^{2}+y^{2} \leq 1, \quad 0 \leq z \leq 1$.
\#2. Using the Divergence Theorem, write out and evaluate the triple-integral which is equivalent to the surface integral $\iint_{S} \vec{F} \cdot d S$ which calculates the flux of \vec{F} across S if
$\vec{F}(x, y, z)=\left\langle e^{x} \sin y, e^{x} \cos y, y z^{2}\right\rangle$
S is the surface of the box bounded by the planes $x=0, x=1, y=0, y=1, z=0$, and $z=2$.
\#3. Using the Divergence Theorem, write out and evaluate the triple-integral which is equivalent to the surface integral $\iint_{S} \vec{F} \cdot d S$ which calculates the flux of \vec{F} across S if
$\vec{F}(x, y, z)=\left\langle\cos z+x y^{2}, x e^{-z}, \sin y+x^{2} z\right\rangle$ S is the surface of the solid bounded by the paraboloid $z=x^{2}+y^{2}$ and the plane $z=4$.
\#4. A vector field \vec{F} is shown. Determine whether is positive or negative at P_{1} and P_{2}.

