16.1 and 16.2 day 1

#1. Sketch the vector field for $\overrightarrow{F}(x, y) = \langle 1, x \rangle$

#3. Evaluate the line integral, where C is the given curve:

 $\int_{C} xy^4 \, ds \quad C \text{ is the right half of circle } x^2 + y^2 = 16$

#2. Evaluate the line integral, where C is the given

curve: $\int_C y^3 ds$ $C: x = t^3, y = t, 0 \le t \le 2$

#4. Evaluate the line integral, where *C* is the given curve: $\int_C xy \, dx + (x - y) \, dy$ where *C* consists of line segments from (0,0) to (2,0) and from (2,0) to (3,2). #5. Evaluate the line integral, where *C* is the given curve: $\int_C xe^{yz} ds$ where *C* is the line segment from (0,0,0) to (1,2,3). #1. Let \overrightarrow{F} be the vector field shown in the figure.

(i) If C_1 is the vertical line segment from (-3, -3) to (-3, 3), determine whether $\int_{C_1} \overrightarrow{F} \cdot d\overrightarrow{r}$ is positive, negative, or zero.

(ii) If C_2 is the counterclockwise-oriented circle with radius 3 and center at the origin, determine

whether $\int_{C_2} \overrightarrow{F} \cdot d\overrightarrow{r}$ is positive, negative, or zero.

#2. Evaluate the line integral $\int_{C_1} \vec{F} \cdot d\vec{r}$ where *C* is given by the vector function $\vec{r}(t)$ $\vec{F}(x,y) = \langle xy, 3y^2 \rangle$

$$\overrightarrow{r}(t) = \langle 1 \, 1 t^4, t^3 \rangle \quad 0 \le t \le 1$$

#3. Find the work done by the force field $\vec{F}(x, y) = \langle x \sin y, y \rangle$ on a particle that moves along the parabola $y = x^2$ from (-1,1) to (2,4). #4. Show that a constant force field does zero work on a particle that moves once uniformly around the circle $x^2 + y^2 = 1$.

#1. Determine whether or not \overrightarrow{F} is a conservative vector field. If it is, find a function f such that $\overrightarrow{F} = \nabla f$.

(i)
$$\overrightarrow{F}(x,y) = \langle 2x - 3y, -3x + 4y - 8 \rangle$$

#2. The figure shows the vector field

 $\overrightarrow{F}(x, y) = \langle 2xy, x^2 \rangle$ and three curves that start at (1,2) and end at (3,2).

(i) Explain why $\int_{C} \vec{F} \cdot d\vec{r}$ has the same value for all three curves.

(ii) What is this common value?

(ii)
$$\overrightarrow{F}(x, y) = \langle ye^x + \sin y, e^x + x\cos y \rangle$$

#3. Find a function f such that $\overrightarrow{F} = \nabla f$ and use it to evaluate $\int_{C} \overrightarrow{F} \cdot d\overrightarrow{r}$ along the given curve C. $\overrightarrow{F}(x, y) = \int_{C} \frac{1}{2} \frac{2}{r} \frac{1}{r}$

$$\dot{F}(x,y) = \langle xy^2, x^2y \rangle$$

$$C: \vec{r}(t) = \langle t + \sin\left(\frac{\pi}{2}t\right), t + \cos\left(\frac{\pi}{2}t\right) \rangle \quad 0 \le t \le 1$$

#4. Show that the line integral is independent of path and evaluate the integral.

$$\int_{C} \tan y \, dx + x \sec^2 y \, dy$$

C is any path from (1,0) to $\left(2, \frac{\pi}{4}\right)$

#5. Find the work done by the force field \overrightarrow{F} in moving an object from *P* to *Q*.

$$\vec{F}(x,y) = \left\langle 2y^{\frac{3}{2}}, \ 3x\sqrt{y} \right\rangle$$
$$P(1,1), \quad Q(2,4)$$

#6. Is the vector field shown in the figure conservative? Explain.

#1. Evaluate the line integral (i) directly and (ii) using Green's Theorem.

$$\oint_C (x-y) \, dx + (x+y) \, dy$$

C is the circle with center at the origin, radius 2.

#2. Use Green's Theorem to evaluate the line integral along the given positively oriented curve. $\oint_C xy^2 dx + 2x^2 y \, dy$

C is the triangle with vertices (0,0), (2,2) and (2,4).

#3. Use Green's Theorem to evaluate the line integral along the given positively oriented curve. $\oint_C y^3 dx - x^3 dy$

C is the circle $x^2 + y^2 = 4$.

#4. Use Green's Theorem to evaluate $\int \vec{F} \cdot d\vec{r}$.

(Check the orientation of the curve before applying the theorem)

$$\overrightarrow{F}(x,y) = \left\langle \sqrt{x} + y^3, x^2 + \sqrt{y} \right\rangle$$

C consists of the arc of the curve $y = \sin x$ from (0,0) to $(\pi,0)$ and the line segment from $(\pi,0)$ to (0,0).

#5. A particle starts at the point (-2,0) , moves

along the *x*-axis to (2,0), and then along the semicircle $y = \sqrt{4-x^2}$ to the starting point. Use Green's theorem to find the work done on this particle by the force field

$$\overrightarrow{F}(x,y) = \langle x, x^3 + 3xy^2 \rangle.$$

16.5

#1. Find (i) the curl and (ii) the divergence of the vector field $\overrightarrow{F}(x, y, z) = \langle xyz, 0, -x^2y \rangle$

#2. Find (i) the curl and (ii) the divergence of the vector field $\vec{F}(x, y, z) = \langle \ln x, \ln(xy), \ln(xyz) \rangle$

#3. The vector field \overrightarrow{F} is shown in the *xy*-plane and looks the same in all other horizontal planes (its *z*-component is zero).

(i) Is $div \vec{F}$ positive, negative, or zero? Explain.

(ii) Determine whether $curl \overrightarrow{F} = \overrightarrow{0}$. If not, in which direction does $curl \overrightarrow{F}$ point?

#5. Let f be a scalar field and \overrightarrow{F} a vector field. State whether each expression is meaningful. If not, explain why. If so, state whether it is a scalar field or a vector field.

(i)
$$curl \vec{F}$$

(ii) $div\vec{F}$

(iii) $\nabla \overrightarrow{F}$

(iv) $div(\nabla f)$

#4. The vector field \overrightarrow{F} is shown in the *xy*-plane and looks the same in all other horizontal planes (its *z*-component is zero).

(i) Is $div \vec{F}$ positive, negative, or zero? Explain. (ii) Determine whether $curl \vec{F} = \vec{0}$. If not, in which direction does $curl \vec{F}$ point?

(v)
$$curl\left(curl\overrightarrow{F}\right)$$

(vi)
$$(\nabla f) x \left(div \overrightarrow{F} \right)$$

#1. Determine whether the points P and Q lie on the given surface.

$$\vec{r}(u,v) = \langle 2u+3v, 1+5u-v, 2+u+v \rangle P(7,10,4), Q(5,22,5)$$

#2. Identify the surface with the given vector equation.

$$\overrightarrow{r}(u,v) = \langle u+v, 3-v, 1+4u+5v \rangle$$

#3. Find a parametric representation for the surface: the plane that passes through the point (1, 2, -3) and contains the vectors

 $\langle 1, 1, -1 \rangle$ and $\langle 1, -1, 1 \rangle$.

#4. Find a parametric representation for the surface: the lower half of the ellipsoid $2x^2 + 4y^2 + z^2 = 1$

#5. Find a parametric representation for the surface: the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies above the cone $z = \sqrt{x^2 + y^2}$.

16.6 day 2

#1. Find an equation of the tangent plane to the given parametric surface at the specified point.

$$\overrightarrow{r}(u,v) = \langle u+v, 3u^2, u-v \rangle$$
(2,3,0)

#2. Find the area of the surface: the part of the plane 3x + 2y + z = 6 that lies in the first octant.

#3. Find the area of the surface: the part of the surface z = xy that lies within the cylinder $x^2 + y^2 = 1$.

#4. Find the area of the surface: the part of the hyperbolic paraboloid $z = y^2 - x^2$ that lies between the cylinders $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$.

16.7 day 1

#1. Evaluate the surface integral $\iint_{S} x^2 yz \, dS$

S is the part of the plane z = 1 + 2x + 3y that lies above the rectangle $0 \le x \le 3$, $0 \le y \le 2$. #2. Evaluate the surface integral $\iint_{S} yz \ dS$

S is the surface with parametric equations $x = u^2$, $y = u \sin v$, $z = u \cos v$ $0 \le u \le 1$, $0 \le v \le \frac{\pi}{2}$.

- #3. Evaluate the surface integral $\iint_{S} (x^{2}z + y^{2}z) dS$ S is the hemisphere $x^{2} + y^{2} + z^{2} = 4$, $z \ge 0$.

16.7 day 2

#1. Evaluate the surface integral $\iint_{S} \overrightarrow{F} \cdot dS$

(find the flux of \overrightarrow{F} across *S*):

 $\overrightarrow{F}(x,y,z) = \langle xy, yz, zx \rangle$

S is the part of the paraboloid $z = 4 - x^2 - y^2$ that lies above the square $0 \le x \le 1$, $0 \le y \le 1$, and has upward orientation. #2. Evaluate the surface integral $\iint_{S} \overrightarrow{F} \cdot dS$

(find the flux of \overrightarrow{F} across *S*):

$$\vec{F}(x,y,z) = \langle x, -z, y \rangle$$

S is the part of the sphere $x^2 + y^2 + z^2 = 4$ in the first octant, with orientation toward the origin.

#3. Evaluate the surface integral $\iint_{S} \overrightarrow{F} \cdot dS$

(find the flux of \overrightarrow{F} across *S*):

$$\overrightarrow{F}(x,y,z) = \langle 0, y, -z \rangle$$

S consists of the paraboloid $y = x^2 + z^2$, $0 \le y \le 1$ and the disk $x^2 + z^2 \le 1$, y = 1 with upward orientation. #4. Evaluate the surface integral $\iint_{S} \overrightarrow{F} \cdot dS$

(find the flux of \overrightarrow{F} across *S*):

 $\overrightarrow{F}(x,y,z) = \langle x, 2y, 3z \rangle$

S is the cube with vertices $(\pm 1, \pm 1, \pm 1)$.

16.8

#1. Using Stokes' Theorem, write out and evaluate the single-integral which is equivalent to the

surface integral which calculates $\iint_{S} \left(curl \overrightarrow{F} \right) \cdot dS$ where

 $\vec{F}(x,y,z) = \langle x^2 z^2, y^2 z^2, xyz \rangle$

S is the part of the paraboloid $z = x^2 + y^2$ that lies insides the cylinder $x^2 + y^2 = 4$, oriented upward.

#2. Using Stokes' Theorem, write out and evaluate the double-integral which is equivalent to the line

integral $\int_{C} \vec{F} \cdot d\vec{r}$ which sums the contributions of

the field \overrightarrow{F} along path C

 $\overrightarrow{F}(x,y,z) = \langle x+y^2, y+z^2, z+x^2 \rangle$

C is the triangle with vertices (1,0,0), (0,1,0), and (0,0,1).

#3. Verify that Stokes' Theorem is true for the

Double-integral side

given vector field \overrightarrow{F} and surface S by writing out and evaluating integrals for both sides of the Stokes' Theorem equation.

$$\overrightarrow{F}(x,y,z) = \langle y^2, x, z^2 \rangle$$

S is the part of the paraboloid $z = x^2 + y^2$ that lies below the plane z = 1, oriented upward. #3 (continued). Verify that Stokes' Theorem is

Single-integral side

true for the given vector field \overrightarrow{F} and surface S by writing out and evaluating integrals for both sides of the Stokes' Theorem equation.

$$\vec{F}(x,y,z) = \langle y^2, x, z^2 \rangle$$

S is the part of the paraboloid $z = x^2 + y^2$ that lies below the plane z = 1, oriented upward.

Double-integral side....

#1 Verify that the Divergence Theorem is true for

the given vector field \overrightarrow{F} on the region *E* by writing out and evaluating integrals for both sides of the Divergence Theorem equation.

$$\vec{F}(x, y, z) = \langle xy, yz, zx \rangle$$

E is the solid cylinder $x^2 + y^2 \le 1$, $0 \le z \le 1$.

16.9

#1(continued) Verify that the Divergence Theorem

is true for the given vector field \overrightarrow{F} on the region *E* by writing out and evaluating integrals for both sides of the Divergence Theorem equation. \rightarrow

$$F(x, y, z) = \langle xy, yz, zx \rangle$$

E is the solid cylinder $x^2 + y^2 \le 1$, $0 \le z \le 1$.

Triple-integral side....

#2. Using the Divergence Theorem, write out and evaluate the triple-integral which is equivalent to the surface integral $\iint_{S} \overrightarrow{F} \cdot dS$ which calculates the flux of \overrightarrow{F} across S if $\overrightarrow{F}(x, y, z) = \langle e^x \sin y, e^x \cos y, yz^2 \rangle$

S is the surface of the box bounded by the planes x = 0, x = 1, y = 0, y = 1, z = 0, and z = 2.

#3. Using the Divergence Theorem, write out and evaluate the triple-integral which is equivalent to the surface integral $\iint_{S} \vec{F} \cdot dS$ which calculates the flux of \vec{F} across *S* if $\vec{F}(x, y, z) = \langle \cos z + xy^2, xe^{-z}, \sin y + x^2z \rangle$ *S* is the surface of the solid bounded by the paraboloid $z = x^2 + y^2$ and the plane z = 4. #4. A vector field \overrightarrow{F} is shown. Determine whether is positive or negative at P_1 and P_2 .

