Calc III - Ch 15 Part 2 - Required Practice

15.6

\#1. Evaluate the given integral over the specified region using the three specified orders of integration.
$\iiint_{E} x y z^{2} d V$
$E=\{(x, y, z) \mid 0 \leq x \leq 1,-1 \leq y \leq 2,0 \leq z \leq 3\}$
(i) ...integrating first with respect to y, then z, and then x.

Name: \qquad
(ii) ...integrating first with respect to x, then y, and then z.

$$
\text { then } z \text {. }
$$

(iii) ...integrating first with respect to z, then y, and then x.
\#2. Evaluate the iterated integral
$\int_{0}^{1} \int_{0}^{z} \int_{0}^{y} z e^{-y^{2}} d x d y d z$
\#3. Evaluate the integral $\iiint_{E} 6 x y d V$
where E lies under the plane $z=1+x+y$ and above the region in the $x y$-plane bounded by the curves $y=\sqrt{x}, y=0$, and $x=1$.
\#4. Set up (but do not evaluate) a triple integral to find the volume of the solid bounded by the cylinder $y=x^{2}$ and the planes $z=0, z=4$, and $y=9$.
\#5. The figure shows the region of integration for the integral $\int_{0}^{1} \int_{\sqrt{x}}^{1-y} \int_{0}^{1-y} f(x, y, z) d z d y d x$.

Rewrite this integral (but do not evaluate) as an equivalent iterated integral in the specified integration orders....
(i) $\int_{0}^{?} \int_{0}^{?} \int_{0}^{?} f(x, y, z) d x d y d z$.
(ii) $\int_{0}^{?} \int_{0}^{?} \int_{0}^{?} f(x, y, z) d y d z d x$.

15.7

\#1. Plot the point whose cylindrical coordinates are given:
$\left(2, \frac{\pi}{4}, 1\right)$
\#3. Sketch the solid described by the inequalities:
$-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}, \quad 0 \leq r \leq 2, \quad 0 \leq z \leq 1$
\#2. Sketch and describe in words the surface whose equation is given: $\theta=\frac{\pi}{4}$
\#4. Sketch the solid whose volume is given by the integral: $\int_{0}^{4} \int_{0}^{2 \pi} \int_{r}^{4} r d z d \theta d r$
\#5. Evaluate $\iiint_{E}\left(x^{3}+x y^{2}\right) d V$, where E is the solid in the first octant that lies beneath the paraboloid $z=1-x^{2}-y^{2}$.
\#6. Evaluate $\iiint_{E} x^{2} d V$, where E is the solid that lies within the cylinder $x^{2}+y^{2}=1$, above the plane $z=0$, and below the cone $z^{2}=4 x^{2}+4 y^{2}$.

15.8

\#1. Plot the point whose spherical coordinates are given and find the rectangular coordinates of the point:
(i) $(1,0,0)$
(ii) $\left(2, \frac{\pi}{3}, \frac{\pi}{4}\right)$
\#4. Sketch the solid described by the given inequalities:
$\rho \leq 2, \quad 0 \leq \phi \leq \frac{\pi}{2}, \quad 0 \leq \theta \leq \frac{\pi}{2}$
\#3. Identify the surface whose equation is given:
$\rho=\sin \theta \sin \phi$
\#2. Sketch and describe in words the surface whose equation is given: $\phi=\frac{\pi}{3}$
\#5. Write the equation in spherical coordinates:
(i) $z^{2}=x^{2}+y^{2}$
\#6. Sketch the solid whose volume is given by the integral and evaluate the integral.

$$
\int_{0}^{\pi / 6} \int_{0}^{\pi / 2} \int_{0}^{3} \rho^{2} \sin \phi d \rho d \theta d \phi
$$

(ii) $x^{2}+z^{2}=9$
\#7. Set up the triple integral of an arbitrary continuous function $f(x, y, z)$ in cylindrical or spherical coordinates over the solid shown.

\#8. Evaluate using spherical coordinates
$\iiint_{B}\left(x^{2}+y^{2}+z^{2}\right)^{2} d V$, where B is the ball with center at the origin and radius 5 .
\#9. Find the volume of the part of the ball $\rho \leq 4$ that lies between the cones $\phi=\frac{\pi}{6}$ and $\phi=\frac{\pi}{3}$.
\#10. Find the volume of the solid that lies above the cone $\phi=\frac{\pi}{3}$ and below the sphere $\rho=4 \cos \phi$
\#11. Evaluate the integral by changing to spherical
coordinates: $\int_{0}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{2-x^{2}-y^{2}}} x y d z d y d x$

Ch 15 Part 2 Test Review

\#1. $\iiint_{T} x^{2} d V$, where T is the solid tetrahedron with vertices $(0,0,0),(1,0,0),(0,1,0)$, and $(0,0,1)$.

NOTE: On all test review problems, set up the integral including limits of integration but do not evaluate.
\#2. $\iiint_{T} x y z d V$, where T is the solid tetrahedron with vertices $(0,0,0),(1,0,0),(1,1,0)$, and $(1,0,1)$.
\#3. Express the integral $\iiint_{E} f(x, y, z) d V$, as
an iterated integral in all six integration orderings, where E is the solid bounded by the given surface:

$$
y=x^{2}, \quad z=0, \quad y+2 z=4
$$

\#4. The figure shows the region of integration for the integral $\int_{0}^{1} \int_{\sqrt{x}}^{1-y} \int_{0}^{1-y} f(x, y, z) d z d y d x$.

Rewrite this integral in the other five integration orders.
\#5. Write five other iterated integrals that are equivalent to $\int_{0}^{1} \int_{0}^{x^{2}} \int_{0}^{y} f(x, y, z) d z d y d x$.
\#6. Evaluate $\iiint_{E} x^{2} d V$, where E is the solid that lies within the cylinder $x^{2}+y^{2}=1$, above the plane $z=0$, and below the cone $z^{2}=4 x^{2}+4 y^{2}$.
\#7. Find the volume of the solid that lies within both the cylinder $x^{2}+y^{2}=1$ and the sphere $x^{2}+y^{2}+z^{2}=4$.
\#8. Find the volume of the region bounded by the paraboloids $z=x^{2}+y^{2}$ and $z=36-3 x^{2}-3 y^{2}$.
\#9. Evaluate $\iiint_{E} x^{2} d V$, where E is bounded by the $x z$-plane and the hemispheres $y=\sqrt{9-x^{2}-z^{2}}$, and $y=\sqrt{16-x^{2}-z^{2}}$.
\#10. Evaluate $\iiint_{E} x y z d V$, where E lies between the spheres $\rho=2$ and $\rho=4$ and above the cone $\phi=\frac{\pi}{3}$.
\#11. Evaluate the integral by changing to spherical coordinates:

$$
\int_{0}^{9} \int_{0}^{\sqrt{9-x^{2}}} \int_{0}^{\sqrt{9-x^{2}-y^{2}}}\left(x^{2} z+y^{2} z+z^{3}\right) d z d x d y
$$

\#12. Evaluate $\iiint_{E} x^{2} y^{2} d V$, where E is bounded
by the paraboloid $z=1-x^{2}-y^{2}$ and the plane $z=0$.
\#13. Evaluate $\iiint_{E} y z d V$, where E lies above the plane $z=0$, below the plane $z=y$, and inside the cylinder $x^{2}+y^{2}=4$.
\#14. Find the volume of the solid tetrahedron with vertices $(0,0,0),(0,0,1),(0,2,0)$, and $(2,2,0)$.
\#15. Find the volume of the solid bounded by the cylinder $x^{2}+y^{2}=4$ and the planes $z=0$ and $y+z=3$.
\#16. Find the volume of the solid above the paraboloid $z=x^{2}+y^{2}$ and below the half-cone $z=\sqrt{x^{2}+y^{2}}$.
\#17. Convert the integral to spherical coordinates:

$$
\int_{-2}^{2} \int_{0}^{\sqrt{4-y^{2}}} \int_{-\sqrt{4-x^{2}-y^{2}}}^{\sqrt{4-x^{2}-y^{2}}} y^{2} \sqrt{x^{2}+y^{2}+z^{2}} d z d x d y
$$

