Calc III - Ch 14 - Part 2 - Required Practice

14.6

\#1. $2+\frac{\sqrt{3}}{2}$
\#2. (i) $\nabla f=\langle 2 \cos (2 x+3 y), 3 \cos (2 x+3 y)\rangle$
(ii) $\langle 2,3\rangle$
(iii) $\sqrt{3}+\frac{3}{2}$
\#3. $\frac{23}{10}$
\#4. $\frac{4}{\sqrt{30}}$
\#5. $\frac{2}{5}$
\#6. $\sqrt{32}$ in direction $\langle-4,4\rangle$ or $\langle-1,1\rangle$
\#7. $\left(\frac{3}{2}, \frac{5}{2}\right)$
\#8. (i) ascend at $0.8 \frac{m \text { height }}{m \text { in direction }}$
(ii) descend at $-\frac{0.2}{\sqrt{2}} \frac{m \text { height }}{m \text { in direction }}$
(iii) $\nabla f=\langle-0.6,-0.8\rangle$

$$
1 \frac{m \text { height }}{m \text { in direction }}
$$

$$
45^{\circ}
$$

\#9. (paths must cross perpendicular to contour lines)
\#10. (vector starts at 4,6 goes down and slightly right in direction of fastest increase - length is about 1.5)
\#11. $x+y+z=11$

ANSWERS ONLY

14.7

\#1. . (i) saddle point at $(0,2)$
(ii) local maximum at $(0,2)$
(iii) is inconclusive
\#2. Saddle point at $(0,0)$, local min at $(1,1)$
\#3. Local max value of 11 at $\left(-1, \frac{1}{2}\right)$ there are no local minimum values.
\#4. Absolute max of 9 at $(2,0)$, absolute min of -14 at $(0,3)$.
\#5. Minimum distance is $\sqrt{3}$.
\#6. $x=y=z=\frac{100}{3}$.
\#7. Base is $40 \mathrm{~cm} \times 40 \mathrm{~cm}$, height $=20 \mathrm{~cm}$.

14.8

\#1. Minimum of 2 at $(1,1)$ and $(-1,-1)$
\#2. Maximum of 70 at $(1,3,5)$, minimum of -70
at $(-1,-3,-5)$
\#3. (i) Lagrange solution is $(9,4)$
(ii) $f(25,0)=50, f(9,4)=30$
(iii) Lagrange can find a minimum here because at minimum objective function and constraint are parallel. There is no way to make objective function parallel to constraint for a maximum.

(iv) Objective function and constraint are parallel (tangent) at $(9,4)$.

