#1. The *temperature-humidity index I* is the perceived air temperature when the actual temperature is *t* and the relative humidity is *h*, so we can write I = f(T, h). The following table to values of *I* is an excerpt from a table compiled by the National Oceanic & Atmospheric Administration:

|     |    | Kelat | ive numic | inty (%) |     |     |
|-----|----|-------|-----------|----------|-----|-----|
| Th  | 20 | 30    | 40        | 50       | 60  | 70  |
| 80  | 77 | 78    | 79        | 81       | 82  | 83  |
| 85  | 82 | 84    | 86        | 88       | 90  | 93  |
| 90  | 87 | 90    | 93        | 96       | 100 | 106 |
| 95  | 93 | 96    | 101       | 107      | 114 | 124 |
| 100 | 99 | 104   | 110       | 120      | 132 | 144 |

(i) What is the value of f(95, 70)? What is its meaning?

(ii) For what value of h is f(95, h) = 100?

(iii) For what value of T is f(T, 50) = 88?

(iv) What are the meanings of the functions

I = f(80, h) and I = f(100, h)? Compare the behavior of these two functions of *h*.

- #2. Let  $f(x, y) = x^2 e^{3xy}$ .
- (i) Evaluate f(2, 0).
- (ii) Find the domain of *f*.
- (iii) Find the range of *f*.

#3. Sketch the graph of the function f(x, y) = 10 - 4x - 5y.

(14.1) #4. A contour map for a function f is shown. Use it to estimate the values of

#5. Draw a contour map of the function showing several level curves:  $f(x, y) = ye^x$ .

f(-3,3) and f(3,-2). What can you say about the shape of the graph?



#6. Describe the level surfaces of the function f(x, y, z) = x + 3y + 5z.

- #3. Find the limit, if it exists, or show that the limit does not exist  $\lim_{(x,y)\to(0,0)} \frac{x^2 y e^y}{x^4 + 4y^2}$ .
- #1. Find the limit, if it exists, or show that the limit does not exist  $\lim_{(x,y)\to(2,1)} \frac{4-xy}{x^2+3y^2}$ .

#2. Find the limit, if it exists, or show that the limit does not exist  $\lim_{(x,y)\to(0,0)} \frac{y^4}{x^4 + 3y^4}$ .

#1. The wind-chill index W is the perceived temperature when the actual temperature is t and the wind speed is v, so we can write W = f(T, v).

The following table provide values:

| Wind speed | l (km/h) |
|------------|----------|
|            |          |

| Actual temperature (°C) | T   | 20  | 30   | 40  | 50  | 60  | 70   |
|-------------------------|-----|-----|------|-----|-----|-----|------|
|                         | -10 | -18 | -20  | -21 | -22 | -23 | -23  |
|                         | -15 | -24 | -26  | -27 | -29 | -30 | - 30 |
|                         | -20 | -30 | -33  | -34 | -35 | -36 | -37  |
|                         | -25 | -37 | - 39 | -41 | -42 | -43 | -44  |

(i) Estimate the values of

 $f_{T}(-15, 30)$  and  $f_{v}(-15, 30)$ . What are the

practice interpretations of these values?

(ii) In general, what can you say about the signs of  $\partial W$   $\partial W$ 

 $\frac{\partial W}{\partial T}$  and  $\frac{\partial W}{\partial v}$ ?

(iii) What appear to be the value of the following limit?  $\lim_{v \to \infty} \frac{\partial W}{\partial v}$ 

#2. Determine the signs of the partial derivatives  $f_x(1,2)$ ,  $f_y(1,2)$ , and  $f_{xx}(1,2)$  for the function f whose graph is shown.



#3. A contour map is given for a function f. Use it to estimate  $f_x(2,1)$  and  $f_y(2,1)$ 



#4. Find both first partial derivatives of the function  $f(x, y) = y^5 - 3xy$ 

(14.3) #5. Find both first partial derivatives of the function  $w = \frac{e^v}{u + v^2}$ 

#8. Find  $f_{y}(2,1,-1)$  for  $f(x,y,z) = \frac{y}{x+y+z}$ 

#6. Find both first partial derivatives of the  $x^{*}$ 

function  $f(x, y) = \int_{y}^{x} \cos(t^2) dt$ 

#9. Verify that the conclusion of Clariaut's Theorem hold (that  $u_{xy} = u_{yx}$ )  $u = x \sin(x+2y)$ 

#7. Find both first partial derivatives of the function  $w = \ln(x+2y+3z)$ 

#1. Find an equation of the tangent plane to the given surface at the specified point  $z = 4x^2 - y^2 + 2y$ , (-1, 2, 4).

#3. Explain why the function is differentiable at the given point. Then find the linearization L(x,y) of the function at that point.

$$f(x,y) = x^3 y^4$$
, (1,1).

#2. Find an equation of the tangent plane to the given surface at the specified point  $z = y \ln x$ , (1, 4, 0).

#4. Find the differential of the function.  $z = x^{3} \ln(y^{2}).$  (14.4) #5. Verify the linear approximation at (0,0).  $\frac{2x+3}{4y+1} \approx 3 + 2x - 12y.$  #6. If  $z = 5x^2 + y^2$  and (x, y) changes from (1, 2) to (1.05, 2.1), compare the values of  $\Delta z$  and dz.

#1. Use the Chain Rule to find  $\frac{dz}{dt}$  $z = x^2 + y^2 + xy$ ,  $x = \sin t$ ,  $y = e^t$ . #3. Use a tree diagram to write out the Chain Rule for the given case. Assume all functions are differentiable.

$$u = f(x, y), \quad x = x(r, s, t), \quad y = y(r, s, t).$$

#2. Use the Chain Rule to find  $\frac{\partial z}{\partial s}$  and  $\frac{\partial z}{\partial t}$  $z = x^2 y^3$ ,  $x = s \cos t$ ,  $y = s \sin t$ .

#4. Use the Chain Rule to find the indicated partial derivatives

$$z = x^{2} + xy^{3}, \quad x = uv^{2} + w^{3}, \quad y = u + ve^{w}$$
$$\frac{\partial z}{\partial u}, \quad \frac{\partial z}{\partial v}, \quad \frac{\partial z}{\partial w} \quad when \ u = 2, \ v = 1, \ w = 0$$

#5. Use 
$$\frac{dy}{dx} = -\frac{\left(\frac{\partial F}{\partial x}\right)}{\left(\frac{\partial F}{\partial y}\right)} = -\frac{F_x}{F_y}$$
 to find  $\frac{dy}{dx}$ .  
 $\sqrt{xy} = 1 + x^2 y$ .

#6. The voltage V in a simple electrical circuit is slowly decreasing as the battery wears out. The resistance R is slowly increasing as the resistor heats up. Use Ohn's Law, V = IR to find how the current I is changing at the moment when

$$R = 400\Omega, \ I = 0.08A, \ \frac{dV}{dt} = -0.01 \frac{V}{s},$$
  
and  $\frac{dR}{dt} = 0.03 \frac{\Omega}{s}.$ 

## Ch 14 Part 1 Test Review

#1. Draw a contour map of the function showing several level curves:  $f(x, y) = (y - 2x)^2$ .

#3. Find the limit, if it exists, or show that the limit does not exist  $\lim_{(x,y)\to(0,0)} \frac{y^4}{x^4 + 3y^4}$ .

#2. Draw a contour map of the function showing several level curves:  $f(x, y) = x^3 - y$ .

#4. Find the limit, if it exists, or show that the limit does not exist  $\lim_{(x,y)\to(0,0)} \frac{6x^3y}{2x^4+y^4}$ .

#5. Find both first partial derivatives of the function  $f(x, y) = y^5 - 3xy$ 

#7. Find both first partial derivatives of the function  $u = te^{(w_t)}$ 

#6. Find both first partial derivatives of the function  $f(x, y) = x^4 y^3 + 8x^2 y$ 

#8. Find all the second partial derivatives of  $f(x, y) = x^3 y^5 + 2x^4 y$ 

#9. Find an equation of the tangent plane to the given surface at the specified point  $z = 4x^2 - y^2 + 2y$ , (-1, 2, 4)

#10. Find an equation of the tangent plane to the given surface at the specified point  $z = 3(x-1)^2 + 2(y+3)^2 + 7$ , (2, -2, 12)

#11. Find the linear approximation of the function  $f(x, y) = \ln(x-3y)$  at (7,2) and use it to approximate f(6.9, 2.06).

#13. Find the differential of the function  $v = y \cos xy$ .

#12. Find the differential of the function  $z = x^3 \ln(y^2)$ .

#14. Use the Chain Rule to find  $\frac{dz}{dt}$  $z = \sqrt{1 + x^2 + y^2}$ ,  $x = \ln t$ ,  $y = \cos t$ . #15. Use the Chain Rule to find  $\frac{\partial z}{\partial s}$  and  $\frac{\partial z}{\partial t}$  $z = \sin \theta \cos \phi$ ,  $\theta = st^2$ ,  $\phi = s^2 t$ .

#17. Use a tree diagram to write out the Chain Rule for the given case. Assume all functions are differentiable.

•

$$u = f(r, s, t), r = r(x, y), s = s(x, y), t = t(x, y)$$

#16. Use a tree diagram to write out the Chain Rule for the given case. Assume all functions are differentiable.

 $u = f(x, y), \quad x = x(r, s, t), \quad y = y(r, s, t).$