Calc III - Ch 14 Part 1 - Required Practice

14.1

\#1. The temperature-humidity index I is the perceived air temperature when the actual temperature is t and the relative humidity is h, so we can write $I=f(T, h)$. The following table to values of I is an excerpt from a table compiled by the National Oceanic \& Atmospheric
Administration:

	Relative humidity (\%)						
	T^{h}	20	30	40	50	60	70
$\stackrel{\circ}{\circ}$	80	77	78	79	81	82	83
F	85	82	84	86	88	90	93
E	90	87	90	93	96	100	106
플	95	93	96	101	107	114	124
	100	99	104	110	120	132	144

(i) What is the value of $f(95,70)$? What is its meaning?
(ii) For what value of h is $f(95, h)=100$?
(iii) For what value of T is $f(T, 50)=88$?
(iv) What are the meanings of the functions $I=f(80, h)$ and $I=f(100, h)$? Compare the behavior of these two functions of h.

Name: \qquad
\#2. Let $f(x, y)=x^{2} e^{3 x y}$.
(i) Evaluate $f(2,0)$.
(ii) Find the domain of f.
(iii) Find the range of f.
\#3. Sketch the graph of the function $f(x, y)=10-4 x-5 y$.
(14.1) \#4. A contour map for a function f is shown. Use it to estimate the values of $f(-3,3)$ and $f(3,-2)$. What can you say about the shape of the graph?

\#5. Draw a contour map of the function showing several level curves: $f(x, y)=y e^{x}$.
\#6. Describe the level surfaces of the function $f(x, y, z)=x+3 y+5 z$.

14.2

\#1. Find the limit, if it exists, or show that the limit does not exist $\lim _{(x, y) \rightarrow(2,1)} \frac{4-x y}{x^{2}+3 y^{2}}$.
\#3. Find the limit, if it exists, or show that the limit does not exist $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y e^{y}}{x^{4}+4 y^{2}}$.
\#2. Find the limit, if it exists, or show that the limit does not exist $\lim _{(x, y) \rightarrow(0,0)} \frac{y^{4}}{x^{4}+3 y^{4}}$.

14.3

\#1. The wind-chill index W is the perceived temperature when the actual temperature is t and the wind speed is v, so we can write $W=f(T, v)$. The following table provide values:

Wind speed (km/h)

(i) Estimate the values of
$f_{T}(-15,30)$ and $f_{v}(-15,30)$. What are the practice interpretations of these values?
(ii) In general, what can you say about the signs of $\frac{\partial W}{\partial T}$ and $\frac{\partial W}{\partial v}$?
(iii) What appear to be the value of the following limit? $\lim _{v \rightarrow \infty} \frac{\partial W}{\partial v}$
\#2. Determine the signs of the partial derivatives $f_{x}(1,2), f_{y}(1,2)$, and $f_{x x}(1,2)$ for the function f whose graph is shown.

\#3. A contour map is given for a function f. Use it to estimate $f_{x}(2,1)$ and $f_{y}(2,1)$

\#4. Find both first partial derivatives of the function $f(x, y)=y^{5}-3 x y$
(14.3) \#5. Find both first partial derivatives of the function $w=\frac{e^{v}}{u+v^{2}}$
\#8. Find $f_{y}(2,1,-1)$ for $f(x, y, z)=\frac{y}{x+y+z}$
\#6. Find both first partial derivatives of the function $f(x, y)=\int_{y}^{x} \cos \left(t^{2}\right) d t$
\#9. Verify that the conclusion of Clariaut's Theorem hold (that $u_{x y}=u_{y x}$) $u=x \sin (x+2 y)$
\#7. Find both first partial derivatives of the function $w=\ln (x+2 y+3 z)$

14.4

\#1. Find an equation of the tangent plane to the given surface at the specified point
$z=4 x^{2}-y^{2}+2 y, \quad(-1,2,4)$.
\#2. Find an equation of the tangent plane to the given surface at the specified point
$z=y \ln x,(1,4,0)$.
\#3. Explain why the function is differentiable at the given point. Then find the linearization $L(x, y)$ of the function at that point.

$$
f(x, y)=x^{3} y^{4},(1,1) .
$$

\#4. Find the differential of the function. $z=x^{3} \ln \left(y^{2}\right)$.
(14.4) \#5. Verify the linear approximation at $(0,0)$. $\frac{2 x+3}{4 y+1} \approx 3+2 x-12 y$.
\#6. If $z=5 x^{2}+y^{2}$ and (x, y) changes from $(1,2)$ to $(1.05,2.1)$, compare the values of Δz and $d z$.

14.5

\#1. Use the Chain Rule to find $\frac{d z}{d t}$
$z=x^{2}+y^{2}+x y, \quad x=\sin t, \quad y=e^{t}$.
\#3. Use a tree diagram to write out the Chain Rule for the given case. Assume all functions are differentiable.
$u=f(x, y), \quad x=x(r, s, t), \quad y=y(r, s, t)$.
\#4. Use the Chain Rule to find the indicated partial derivatives
$z=x^{2}+x y^{3}, \quad x=u v^{2}+w^{3}, \quad y=u+v e^{w}$
$\frac{\partial z}{\partial u}, \frac{\partial z}{\partial v}, \frac{\partial z}{\partial w}$ when $u=2, v=1, w=0$
\#5. Use $\frac{d y}{d x}=-\frac{\left(\frac{\partial F}{\partial x}\right)}{\left(\frac{\partial F}{\partial y}\right)}=-\frac{F_{x}}{F_{y}}$ to find $\frac{d y}{d x}$.
$\sqrt{x y}=1+x^{2} y$.
\#6. The voltage V in a simple electrical circuit is slowly decreasing as the battery wears out. The resistance R is slowly increasing as the resistor heats up. Use Ohn's Law, $V=I R$ to find how the current I is changing at the moment when
$R=400 \Omega, I=0.08 \mathrm{~A}, \frac{d V}{d t}=-0.01 \mathrm{~V} / \mathrm{s}$,
and $\frac{d R}{d t}=0.03 \Omega / \mathrm{s}$.

Ch 14 Part 1 Test Review

\#1. Draw a contour map of the function showing several level curves: $f(x, y)=(y-2 x)^{2}$.
\#3. Find the limit, if it exists, or show that the limit does not exist $\lim _{(x, y) \rightarrow(0,0)} \frac{y^{4}}{x^{4}+3 y^{4}}$.
\#4. Find the limit, if it exists, or show that the limit does not exist $\lim _{(x, y) \rightarrow(0,0)} \frac{6 x^{3} y}{2 x^{4}+y^{4}}$.
\#5. Find both first partial derivatives of the function $f(x, y)=y^{5}-3 x y$
\#7. Find both first partial derivatives of the function $u=t e^{(w / t)}$
\#6. Find both first partial derivatives of the function $f(x, y)=x^{4} y^{3}+8 x^{2} y$
\#8. Find all the second partial derivatives of $f(x, y)=x^{3} y^{5}+2 x^{4} y$
\#9. Find an equation of the tangent plane to the given surface at the specified point $z=4 x^{2}-y^{2}+2 y, \quad(-1,2,4)$
\#10. Find an equation of the tangent plane to the given surface at the specified point $z=3(x-1)^{2}+2(y+3)^{2}+7,(2,-2,12)$
\#11. Find the linear approximation of the function $f(x, y)=\ln (x-3 y)$ at $(7,2)$ and use it to approximate $f(6.9,2.06)$.
\#13. Find the differential of the function $v=y \cos x y$.
\#12. Find the differential of the function $z=x^{3} \ln \left(y^{2}\right)$.
\#14. Use the Chain Rule to find $\frac{d z}{d t}$
$z=\sqrt{1+x^{2}+y^{2}}, \quad x=\ln t, \quad y=\cos t$.
\#15. Use the Chain Rule to find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ $z=\sin \theta \cos \phi, \quad \theta=s t^{2}, \quad \phi=s^{2} t$.
\#17. Use a tree diagram to write out the Chain Rule for the given case. Assume all functions are differentiable.

$$
u=f(r, s, t), \quad r=r(x, y), \quad s=s(x, y), \quad t=t(x, y)
$$

\#16. Use a tree diagram to write out the Chain Rule for the given case. Assume all functions are differentiable.
$u=f(x, y), \quad x=x(r, s, t), \quad y=y(r, s, t)$.

