Calc III - Ch 13 - Required Practice

13.1

\#1. Find the domain of the vector function $\vec{r}(t)=\left\langle\sqrt{4-t^{2}}, e^{-3 t}, \ln (t+1)\right\rangle$.
\#2. Find the limit: $\lim _{t \rightarrow 0}\left\langle\frac{e^{t}-1}{t}, \frac{\sqrt{1+t}-1}{t}, \frac{3}{1+t}\right\rangle$.
\#3. Sketch the curve with the given vector equation. Indicate with an arrow the direction in which t increases: $\vec{r}(t)=\langle\sin t, t\rangle$.

Name:
\#4. Find a vector equation and parametric equations for the line segment that joins P to Q : $P(0,0,0), Q(1,2,3)$.
\#5. Sketch in 3D the parametric curve given by the parametric equations: $x=\sin t, y=t, z=\cos t$.
\#6. At what points does the curve
$\vec{r}(t)=\left\langle t, 0,2 t-t^{2}\right\rangle$ intersect the paraboloid $z=x^{2}+y^{2}$?
13.2
\#1. For $\vec{r}(t)=\langle 1+t, \sqrt{t}\rangle$
(i) Sketch the plane curve.
(ii) Find $\overrightarrow{r^{\prime}}(t)$
(iii) On your plane curve sketch, add sketches for $\vec{r}(1)$ and $\overrightarrow{r^{\prime}}(1)$
\#2. Find the derivative of $\vec{r}(t)=\left\langle t \sin t, \quad t^{2}, t \cos 2 t\right\rangle$
\#3. Find the derivative of $\vec{r}(t)=\left\langle 1,-1, e^{4 t}\right\rangle$
\#5. If $\vec{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$, find $\overrightarrow{r^{\prime}}(t), \vec{T}(1), \overrightarrow{r^{\prime \prime}}(t)$ and $\overrightarrow{r^{\prime}}(t) x \overrightarrow{r^{\prime \prime}}(t)$
\#4. Find the unit tangent vector $\vec{T}(t)$ at the point with the given value of the parameter t.
$\vec{r}(t)=\left\langle 4 \sqrt{t}, t^{2}, t\right\rangle, t=1$
\#6. Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point.
$x=1+2 \sqrt{t}, \quad y=t^{3}-t, \quad z=t^{3}+t ; \quad(3,0,2)$
\#7. The curves $\vec{r}_{1}=\left\langle t, t^{2}, t^{3}\right\rangle$ and $\overrightarrow{r_{2}}=\langle\sin t, \sin 2 t, t\rangle$ intersect at the origin. Find their angle of intersection correct to the nearest degree.
\#8. Evaluate the integral: $\int_{0}^{1}\left\langle 16 t^{3},-9 t^{2}, 25 t^{4}\right\rangle d t$

13.3

\#1. Find the length of the curve

$$
\vec{r}(t)=\langle 2 \sin t, 5 t, 2 \cos t\rangle, \quad-10 \leq t \leq 10
$$

\#3. Find the unit tangent vector $\vec{T}(t)$, the unit normal vector $\vec{N}(t)$, and the curvature κ for $\vec{r}(t)=\langle 2 \sin t, 5 t, 2 \cos t\rangle$.
\#4. Find the curvature κ for $\vec{r}(t)=\left\langle t^{2}, 0, t\right\rangle$.
\#2. Reparametrize the curve
$\vec{r}(t)=\langle 2 t, 1-3 t, 5+4 t\rangle$ with respect to arc length measured from the point where $t=0$ in the direction of increasing t.
\#5. Find the curvature κ for $y=2 x-x^{2}$.
\#7. Find the vectors $\vec{T}(t), \vec{N}(t)$, and $\vec{B}(t)$ for $\vec{r}(t)=\langle\cos t, \quad \sin t, \quad \ln (\cos t)\rangle$ at $(1,0,0)$.
\#6. Given the curve:

(i) Is the curvature of the curve C shown in the figure greater at P or at Q ? Explain.
(ii) Estimate the curvature at P and at Q by sketching the osculating circles at those points.
\#8. Find equations of the normal plane and the osculating plane of the curve at the given point: . $x=2 \sin 3 t, y=t, z=2 \cos 3 t$ at $(0, \pi,-2)$

13.4

\#1. Find the velocity, acceleration, and speed of a particle with the given position function. Sketch the path of the particle and draw the velocity and acceleration vectors for the specified value of t.
$\vec{r}(t)=\left\langle-\frac{1}{2} t^{2}, t\right\rangle, t=2$
\#3. Find the position vector of a particle that has the given acceleration and the specified initial velocity and position:

$$
\vec{a}(t)=\langle 2 t, \sin t, \cos 2 t\rangle, \vec{v}(0)=\langle 1,0,0\rangle, \vec{r}(0)=\langle 0,1,0\rangle
$$

\#2. Find the velocity, acceleration, and speed of a particle with the given position function.
$\vec{r}(t)=\left\langle t^{2}+1, t^{3}, \quad t^{2}-1\right\rangle$
\#4. The position function of a particle is given by $\vec{r}(t)=\left\langle t^{2}, 5 t, t^{2}-16 t\right\rangle$. When is the speed a minimum?
\#5. A projectile is fired from the ground with an initial speed of $500 \mathrm{~m} / \mathrm{s}$ and angle of elevation of 30°. Find (i) the range of the projectile, (ii) the maximum height reached, and (iii) the speed at impact.
\#6. A ball is thrown at an angle of 45° to the ground. If the ball land 90 m away, what was the initial speed of the ball?
\#7. (very challenging - if you get a quadratic of the form $A \tan ^{2} \theta+B \tan \theta+C=0$ then you are on the right track $(:)$ A gun has muzzle speed of 150 m / s. Find two angles of elevation that can be used to hit a target 800 m away. (You may also need to know that $\sec ^{2} \theta=\tan ^{2} \theta+1$).

Ch13 Test Review

\#1. Sketch the curve with the given vector equation. Indicate with an arrow the direction in which t increases (always do this for vector function curves, whether it asks for it or not). $\vec{r}(t)=\langle\sin t, t\rangle$.
\#4. Find a vector equation and parametric equations for the line segment that joins P to Q. . $P(0,0,0), Q(1,2,3)$.
\#5. Find a vector equation that represents the curve of intersection of the two surfaces $x^{2}+y^{2}=4$ and $z=x y$.
\#2. Sketch the curve with the given vector equation. $\vec{r}(t)=\langle t, \cos 2 t, \sin 2 t\rangle$.
\#3. Find a vector equation and parametric equations for the line segment that joins P to Q..
$P(1,-1,2), Q(4,1,7)$.
\#6. Find a vector equation that represents the curve of intersection of the two surfaces
$z=4 x^{2}+y^{2}$ and $y=x^{2}$.
\#8. Find the unit tangent vector $\vec{T}(t)$ at the point with the given value of the parameter t :

$$
\vec{r}(t)=\left\langle 4 \sqrt{t}, t^{2}, t\right\rangle, \quad t=1 .
$$

\#9. Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point:
$x=1+2 \sqrt{t}, y=t^{3}-t, z=t^{3}+t ; \quad(3,0,2)$.
\#7. Find the derivative of the vector function $\vec{r}(t)=\left\langle t \sin t, t^{2}, t \cos 2 t\right\rangle$.
\#10. Find $\vec{r}(t)$ if $\overrightarrow{r^{\prime}}(t)=\left\langle 2 t, 3 t^{2}, \sqrt{t}\right\rangle$ and $\vec{r}(1)=\langle 1,1,0\rangle$.
\#11. Find $\vec{r}(t)$ if $\overrightarrow{r^{\prime}}(t)=\left\langle t, e^{t}, t e^{t}\right\rangle$
and $\vec{r}(0)=\vec{i}+\vec{j}+\vec{k}$.
\#12. Find the length of the curve $\vec{r}(t)=\left\langle 2 t, t^{2}, \frac{1}{3} t^{3}\right\rangle, \quad 0 \leq t \leq 1$.
\#13. Find the length of the curve $\vec{r}(t)=\vec{i}+t^{2} \vec{j}+t^{3} \vec{k}, \quad 0 \leq t \leq 1$.
\#14. Find the length of the curve (correct to four decimal places):
$\vec{r}(t)=\langle\sin t, \cos t, \tan t\rangle, \quad 0 \leq t \leq \frac{\pi}{4}$.
\#16. Find the unit tangent vector $\vec{T}(t)$, unit normal vector $\vec{N}(t)$, and curvature κ for

$$
\vec{r}(t)=\langle 2 \sin t, 5 t, 2 \cos t\rangle
$$

\#15. Find the curvature κ of $\vec{r}(t)=\left\langle t, t^{2}, t^{3}\right\rangle$ at the point $(1,1,1)$.
\#17. Find the unit tangent vector $\vec{T}(t)$, unit normal vector $\vec{N}(t)$, and curvature κ for $\vec{r}(t)=\left\langle t, \frac{1}{2} t^{2}, t^{2}\right\rangle$.
\#18. Find the equation of the normal plane of the curve at the given point
$x=t, y=t^{2}, z=t^{3} ;(1,1,1)$.
\#19. Find the velocity, acceleration, and speed of a particle with the given position function $\vec{r}(t)=\left\langle t^{2}+1, t^{3}, t^{2}-1\right\rangle$.
\#20. Find the velocity, acceleration, and speed of a particle with the given position function $\vec{r}(t)=\sqrt{2} t \vec{i}+e^{t} \vec{j}+e^{-t} \vec{k}$.
\#21. A projectile is fired from a position 200 m above the ground with an initial speed of $500 \mathrm{~m} / \mathrm{s}$ and angle of elevation of 30°. Find (i) the range of the projectile, (ii) the maximum height reached, and (iii) the speed at impact.
\#22. A ball is thrown at an angle of 45° to the ground. If the ball lands 90 m away, what was the initial speed of the ball?
\#23. Find the curvature of the ellipse
$x=3 \cos t, \quad y=4 \sin t$ at the points $(3,0)$ and $(0,4)$.
\#24. An athlete puts a shot (throws an object) at an angle of 45° to the horizontal at an initial speed 43 ft / s. It leaves the athlete's hand 7 ft above the ground. (i) Where is the shot 2 seconds later? (ii) What is the maximum height of the object? (iii) Where does the object land?

