Calc III - Ch 12 - Required Practice

12.1

\#1. On a single set of coordinate axes, sketch the points $(0,5,2),(4,0,-1),(1,-1,2)$, and $(2,4,6)$.
\#2. Describe and sketch the surface in \mathbb{R}^{3} represented by the equation $x+y=2$.

Name: \qquad
\#3. Find the lengths of the sides of the triangle $P Q R$. Is it a right triangle? Is it an isosceles triangle? $P(3,-2,-3), Q(7,0,1), R(1,2,1)$.
\#4. Find an equation of the sphere with center $(1,-4,3)$ and radius 5 . What is the intersection of this sphere with the $x z$-plane?
(12.1) \#5. Show that the equation represents a sphere, and find its center and radius:
$2 x^{2}+2 y^{2}+2 z^{2}=8 x-24 z+1$
\#7. Describe in words the region of \mathbb{R}^{3} represented by the equation or inequality: $x^{2}+y^{2}+z^{2} \leq 3$.
12.2
\#1. For the given vectors \vec{a} and \vec{b} :

sketch each of the following:

\#2. Find the vector $\overrightarrow{A B}$ if $A(-1,3), B(2,2)$.
Then sketch $\overrightarrow{A B}$ starting at the origin.
(12.2) \#3. Find a unit vector that has the same direction as the given vector $9 \vec{i}-\vec{j}+4 \vec{k}$.
\#5. An object weighting 10 lbs is suspended with two wires in the following arrangement:

Find the tensions in the two wires.
\#4. A woman walks due west on the deck of a ship at $3 \mathrm{mi} / \mathrm{hr}$. The ship is moving north at a speed of $22 \mathrm{mi} / \mathrm{hr}$. Find the speed and direction of the woman relative to the surface of the water.
(12.2) \#6.

The tension \mathbf{T} at each end of the chain has magnitude 25 N . What is the weight of the chain?

12.3

\#1. Which of the following expressions are meaningful and which are meaningless?

$$
(\vec{a} \bullet \vec{b}) \bullet \vec{c} \quad(\vec{a} \bullet \vec{b}) \vec{c} \quad|\vec{a}|(\vec{b} \bullet \vec{c})
$$

\#2. Find $\vec{a} \bullet \vec{b}$ if $\vec{a}=\left\langle-2, \frac{1}{3}\right\rangle, \vec{b}=\langle-5,12\rangle$
\#3. Find $\vec{a} \bullet \vec{b}$ if $\vec{a}=\left\langle s, 2 s,-s^{2}\right\rangle, \vec{b}=\left\langle t, 3 t, 2 t^{2}\right\rangle$
\#4. Find $\vec{a} \bullet \vec{b}$ if $\vec{a}=\vec{i}-2 \vec{j}+3 \vec{k}, \vec{b}=5 \vec{i}+9 \vec{k}$
\#5. If \vec{u} is a unit vector, find $\vec{u} \bullet \vec{v}$ and $\vec{u} \bullet \vec{w}$.

(12.3) \#6. Find the angle between the vectors (exact and decimal): $\quad \vec{a}=\langle-8,6\rangle, \quad \vec{b}=\langle\sqrt{7}, 3\rangle$
\#9. For what values of b are the vectors $\langle-6, b, 2\rangle$ and $\left\langle b, b^{2}, b\right\rangle$ orthogonal?
\#7. Find the angle between the vectors (exact and decimal): $\quad \vec{a}=\vec{j}+\vec{k}, \quad \vec{b}=\vec{i}+2 \vec{j}-3 \vec{k}$
\#10. Find a unit vector that is orthogonal to both $\langle 1,1,0\rangle$ and $\langle 1,0,1\rangle$.
\#8. Determine whether the given vectors are orthogonal, parallel, or neither:

$$
\vec{a}=\langle-5,3,7\rangle, \quad \vec{b}=\langle 6,-8,2\rangle
$$

\#11. A sled is pulled along a level path through snow by a rope. A $30-\mathrm{lb}$ force acting at an angle of 40° above the horizontal moves the sled 80 ft . Find the work done by the force.
$\vec{a}=\langle 4,6\rangle, \quad \vec{b}=\langle-3,2\rangle$

$$
\vec{a}=2 \vec{i}+6 \vec{j}-4 \vec{k}, \quad \vec{b}=-3 \vec{i}-9 \vec{j}+6 \vec{k}
$$

12.4

\#1. Find the cross product $\vec{a} \times \vec{b}$ and verify that it is orthogonal to both \vec{a} and \vec{b}. $\vec{a}=\langle 1,1,-1\rangle, \vec{b}=\langle 2,4,6\rangle$
\#2. Which of the following expressions are meaningful and which are meaningless? If meaningful, state whether the result is a vector or a scalar.
$\vec{a} \bullet(\vec{b} \times \vec{c}) \quad \vec{a} \times(\vec{b} \bullet \vec{c}) \quad \vec{a} \times(\vec{b} \times \vec{c})$
\#3. Find $|\vec{u} \times \vec{v}|$ and determine whether $\vec{u} \times \vec{v}$ is directed into the page or out of the page.

$$
|\mathbf{u}|=5 \uparrow 60^{\circ} \quad|\mathbf{v}|=10
$$

\#4. If $\vec{a}=\langle 1,2,1\rangle$ and $\vec{b}=\langle 0,1,3\rangle$, find $\vec{a} \times \vec{b}$ and $\vec{b} \times \vec{a}$.
(12.4) \#6. Find the area of the parallelogram with vertices: $A(-2,1), B(0,4), C(4,2)$, and $D(2,-1)$.
\#8. Find the volume of the parallelepiped with adjacent edges, $P Q, P R$, and $P S$. $P(2,0,-1), Q(4,1,0), R(3,-1,1), S(2,-2,2)$.
\#7. (i) Find a nonzero vector orthogonal to the plane through the given points:
$P(1,0,0), Q(0,2,0), R(0,0,3)$.
(ii) Find the area of triangle $P Q R$.
\#9. Use the scalar triple product to verify that the vectors $\vec{u}=\langle 1,5,-2\rangle, \vec{v}=\langle 3,-1,0\rangle, \vec{w}=\langle 5,9,-4\rangle$ are coplanar.

12.5

\#1. Find a vector equation and parametric equations for the line though the point $(2,2.4,3.5)$ and parallel to the vector $\langle 3,2,-1\rangle$.
\#4. Is the line through $(-4,-6,1)$ and $(-2,0,-3)$
\#2. Find parametric equations and symmetric equations for the line though the
points $(1,3,2)$ and $(-4,3,0)$.
\#3. Find parametric equations and symmetric equations for the line though $(2,1,0)$ and perpendicular to both $\vec{i}+\vec{j}$ and $\vec{j}+\vec{k}$.
parallel to the line through $(10,18,4)$ and $(5,3,14)$?
\#5. Find a vector equation for the line segment from $(2,-1,4)$ to $(4,6,1)$.
(12.5) \#6. Find an equation of the plane through the point $(1,-1,1)$ and with normal vector $\langle 1,1,-1\rangle$.
\#8. Find an equation of the plane that passes through the line of intersection of the planes $x-z=1$ and $y+2 z=3$ and is perpendicular to the plane $x+y-2 z=1$.
\#7. Find an equation of the plane through the points $(0,0,0),(2,-4,6)$, and $(5,1,3)$
(12.5) \#9. Find an equation of the plane that passes through the point $(-1,2,1)$ and contains the line of intersection of the planes
$x+y-z=2$ and $2 x-y+3 z=1$
(12.5) \#10. Where does the line through $(1,0,1)$ and $(4,-2,2)$ intersect the plane $x+y+z=6$?
\#11. Determine whether the plane are parallel, perpendicular, or neither. If neither, find the angle between them.
$x+4 y-3 z=1, \quad-3 x+6 y+7 z=0$
\#12. Find an equation for the plane consisting of all points that are equidistant from the points $(1,0,-2)$ and $(3,4,0)$.

12.6 day 1 - problems done in class

For each problem, complete the square to put the equation in standard form, then sketch the 2 D conic section...
\#Example 1. $x^{2}-6 x-8 y-7=0$
\#Example 2. $4 x-y^{2}-2 y-9=0$
\#Example 3. $9 x^{2}+4 y^{2}-36 x+8 y+4=0$
\#Example 4. $2 x^{2}+2 y^{2}+12 x-16 y+40=0$
竍

12.6

\#1. Describe and sketch the surface: $y^{2}+4 z^{2}=4$.
\#4. Draw at least three traces in each of the coordinate planes and identify the surface for $x=y^{2}+4 z^{2}$.
\#2. Describe and sketch the surface: $x-y^{2}=0$.
\#3. Describe and sketch the surface: $z=\cos x$.
(12.6) \#5. Put the equation in standard form, then name and sketch the surface:
$x^{2}-y^{2}+z^{2}-4 x-2 y-2 z+4=0$.
\#7. Find an equation for the surface obtained by rotating the parabola $y=x^{2}$ about the y-axis.
\#6. Sketch the region bounded by the surfaces
$z=\sqrt{x^{2}+y^{2}}$ and $x^{2}+y^{2}=1$ for $1 \leq z \leq 2$.

Ch12 Test Review

\#1. Find the lengths of the sides of the triangle $P Q R$. Is it a right triangle? Is it an isosceles triangle? $P(3,-2,-3), Q(7,0,1), R(1,2,1)$.
\#3. For $\vec{a}=\langle 5,-12\rangle, \vec{b}=\langle-3,-6\rangle$, find:
(i) $\vec{a}+\vec{b}$
(ii) $2 \vec{a}+3 \vec{b}$
(iii) $|\vec{a}-\vec{b}|$
\#2. Determine whether the points lie on a straight line.
(i) $A(2,4,2), B(3,7,-2), C(1,3,3)$.
\#4. Find a unit vector that has the direction as $\langle-4,2,4\rangle$.
(ii) $D(0,-5,5), E(1,-2,4), F(3,4,2)$.
\#5. Rope 3 m and 5 m in length are fastened to a holiday decoration that is suspended over a town square. The decoration has a mass of 5 kg . The ropes, fasted at different heights, make angles of 52° and 40° with the horizontal. Find the tension in each wire.

\#6. A clothesline is tied between two poles, 8 m apart. The line is quite taut and has negligible sag. When a wet shirt with a mass of 0.8 kg is hung at the middle of the line, the midpoint is pulled down 8 cm . Find the tension in each half of the clothesline.
\#7. Find the angle between the vectors (in exact and decimal form). $\vec{a}=\langle 4,0,2\rangle, \vec{b}=\langle 2,-1,0\rangle$.
\#9. If $\vec{a}=\langle 1,2,1\rangle$ and $\vec{b}=\langle 0,1,3\rangle$, find
$\vec{a} \times \vec{b}$ and $\vec{b} \times \vec{a}$.
\#8. For what values of b are the vectors $\langle-6, b, 2\rangle$ and $\left\langle b, b^{2}, b\right\rangle$ orthogonal? .
\#10. Find two unit vectors orthogonal to both $\langle 1,-1,1\rangle$ and $\langle 0,4,4\rangle$.
\#11. Find a vector equation, parametric equations, and symmetric equations for the line through the points $(6,1,-3)$ and $(2,4,5)$.
\#13. Find an equation of the plane through the point $(-2,8,10)$ and perpendicular to the line $x=1+t, y=2 t, z=4-3 t$.
\#12. Find a vector equation for the line of intersection of the planes
$x+y+z=1$ and $x+z=0$.
\#14. Find an equation of the plane that contains the line $x=3+2 t, y=t, z=8-t$ and is parallel to the plane $2 x+4 y+8 z=17$.
\#15. Draw at least two traces for each coordinate plane for $4 x^{2}-16 y^{2}+z^{2}=16$. What kind of solid is this? What is its main axis? Sketch the solid in \mathbb{R}^{3} 。
\#16. If \vec{u} and \vec{v} are the vectors shown in the figure:

(i) Find $\vec{u} \bullet \vec{v}$.
(ii) Find $\left|\begin{array}{lll}\vec{u} & x & \vec{v}\end{array}\right|$.
(iii) Is $\vec{u} x \vec{v}$ directed into the page or out of the page?
(iii) $\vec{a} \bullet \vec{b}$
\#17. For $\vec{a}=\vec{i}+\vec{j}-2 \vec{k}$, and $\vec{b}=3 \vec{i}-2 \vec{j}+\vec{k}$ Find each of the following:
(i) $2 \vec{a}+3 \vec{b}$
(ii) $|\vec{b}|$
(iv) $\vec{a} \times \vec{b}$

