Calc III - Ch 16 - Extra Practice

16.1 and 16.2 day 1

\#1b. Sketch the vector field for
$\vec{F}(x, y)=\langle x-y, x\rangle$
\#3b. Evaluate the line integral, where C is the given curve: $\int_{C} x \sin y d s$ where C is the line segment from $(0,3)$ to $(4,6)$.
\#2b. Evaluate the line integral, where C is the given curve: $\int_{C} x y d s \quad C: x=t^{2}, y=2 t, 0 \leq t \leq 1$
\#4b. Evaluate the line integral, where C is the given curve: $\int_{C}(x+y z) d x+2 x d y+x y z d z$ where C consists of line segments from $(1,0,1)$ to $(2,3,1)$ and from $(2,3,1)$ to $(2,5,2)$.
\#5b. Evaluate the line integral, where C is the given curve: $\int_{C}(2 x+9 z) d s$

$$
C: x=t, \quad y=t^{2}, \quad z=t^{3}, \quad 0 \leq t \leq 1
$$

16.2 day 2

\#1b. The figure shows a vector field \vec{F} and two curves C_{1} and C_{2}. Are the line integrals of \vec{F} over C_{l} and $C_{2}\left(\int_{C} \vec{F} \cdot d \vec{r}\right)$ positive, negative, or zero. Explain.

\#2b. Evaluate the line integral $\int_{C_{1}} \vec{F} \cdot d \vec{r}$ where C is given by the vector function $\vec{r}(t)$
$\vec{F}(x, y, z)=\langle\sin x, \cos y, x z\rangle$
$\vec{r}(t)=\left\langle t^{3},-t^{2}, t\right\rangle \quad 0 \leq t \leq 1$
\#3b. Find the work done by the force field $\vec{F}(x, y)=\langle y,-x\rangle$ on a particle that moves along the curve $y=2 x^{3}$ from $(1,2)$ to $(3,54)$.
\#4b. Show that a constant force field does zero work on a particle that moves once uniformly around the ellipse $\frac{x^{2}}{4}+\frac{y^{2}}{1}=1$.

16.3

\#1b. Determine whether or not \vec{F} is a conservative vector field. If it is, find a function f such that $\vec{F}=\nabla f$.
(i) $\vec{F}(x, y)=\left\langle e^{x} \sin y, e^{x} \cos y\right\rangle$
\#2b. (hints) Check to see if the field is conservative. If it is, then the value computed for a line integral depends only upon the endpoints (independent of path), and you can also use the function f as the antiderivative to compute the value of the line path integral.
(ii) $\vec{F}(x, y)=\left\langle\ln y+2 x y^{3}, 3 x^{2} y^{2}+\frac{x}{y}\right\rangle$
\#3b. Find a function f such that $\vec{F}=\nabla f$ and use it to evaluate $\int_{C} \vec{F} \cdot d \vec{r}$ along the given curve C.
$\vec{F}(x, y, z)=\langle y z, x z, x y+2 z\rangle$
C is the line segment from $(1,0,-2)$ to $(4,6,3)$
\#4b. Show that the line integral is independent of path and evaluate the integral.
$\int_{C}\left(1-y e^{-x}\right) d x+e^{-x} d y$
C is any path from $(0,1)$ to $(1,2)$
\#5b. Find the work done by the force field \vec{F} in moving an object from P to Q.

$$
\begin{aligned}
& \vec{F}(x, y)=\left\langle e^{-y},-x e^{-y}\right\rangle \\
& P(0,1), \quad Q(2,0)
\end{aligned}
$$

\#6b. Is the vector field shown in the figure conservative? Explain.

16.4

\#1b. Evaluate the line integral (i) directly and (ii) using Green's Theorem.
$\oint_{C} x y d x+x^{2} y^{3} d y$
C is the triangle with vertices $(0,0),(1,0)$ and $(1,2)$.
\#1c. Evaluate the line integral
$\oint_{C} x d x+y d y$
C is the triangle with vertices $(0,0),(1,0)$ and $(1,2)$.
\#2b. Use Green's Theorem to evaluate the line integral along the given positively oriented curve.
$\oint_{C}\left(y+e^{\sqrt{x}}\right) d x+\left(2 x+\cos y^{2}\right) d y$
C is the boundary of the region enclosed by the parabolas $y=x^{2}$ and $x=y^{2}$.
\#3b. Use Green's Theorem to evaluate the line integral along the given positively oriented curve. $\oint_{C} y^{3} d x-x^{2} d y$
C is the top half of the circle $x^{2}+y^{2}=9$.
\#4b. Use Green's Theorem to evaluate $\int_{C} \vec{F} \cdot d \vec{r}$.
(Check the orientation of the curve before applying the theorem)

$$
\vec{F}(x, y)=\left\langle e^{x}+x^{2} y, e^{y}-x y^{2}\right\rangle
$$

C is the circle $x^{2}+y^{2}=25$ oriented clockwise.
\#5b. Use Green's Theorem to find the work done by the force $\vec{F}(x, y)=\left\langle x(x+y), \quad x y^{2}\right\rangle$ in moving a particle from the origin along the x-axis to $(1,0)$, then along the line segment to $(0,1)$, and then back to the origin along the y-axis.

16.5

\#1b. Find (i) the curl and (ii) the divergence of the vector field $\vec{F}(x, y, z)=\langle 1, x+y z, x y-\sqrt{z}\rangle$
\#2b. Find (i) the curl and (ii) the divergence of the vector field $\vec{F}(x, y, z)=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}}\langle x, y, z\rangle$
\#3b. The vector field \vec{F} is shown in the $x y$-plane and looks the same in all other horizontal planes (its z-component is zero).
(i) Is $\operatorname{div} \vec{F}$ positive, negative, or zero? Explain.
(ii) Determine whether curl $\vec{F}=\overrightarrow{0}$. If not, in which direction does curl \vec{F} point?

\#5b. Let f be a scalar field and \vec{F} a vector field. State whether each expression is meaningful. If not, explain why. If so, state whether it is a scalar field or a vector field.
(i) grad f
(ii) $\operatorname{curl}(\operatorname{grad} f)$
(iii) $\nabla(\operatorname{div} \vec{F})$
(iv) $\nabla(\operatorname{div} f)$
\#4b. The vector field \vec{F} is shown in the $x y$-plane and looks the same in all other horizontal planes (its z-component is zero).
(i) Is $\operatorname{div} \vec{F}$ positive, negative, or zero? Explain. (ii) Determine whether $\operatorname{curl} \vec{F}=\overrightarrow{0}$. If not, in which direction does curl \vec{F} point?

16.6 day 1

$\# 1$ b. Determine whether the points P and Q lie on the given surface.

$$
\begin{aligned}
& \vec{r}(u, v)=\left\langle u+v, \quad u^{2}-v, \quad u+v^{2}\right\rangle \\
& P(3,-1,5), \quad Q(-1,3,4)
\end{aligned}
$$

\#2b. Identify the surface with the given vector equation.

$$
\vec{r}(s, t)=\left\langle s, t, t^{2}-s^{2}\right\rangle
$$

\#3b. Find a parametric representation for the surface: the plane that passes through the point $(2,4,6)$ and contains the vectors $\langle 2,1,-1\rangle$ and $\langle 1,-1,2\rangle$.
\#4b. Find a parametric representation for the surface: the part of the hyperboloid $x^{2}+y^{2}-z^{2}=1$ that lies to the right of the $x z$-plane.
\#5b. Find a parametric representation for the surface: the part of the plane $z=x+3$ that lies inside the cylinder $x^{2}+y^{2}=1$.

16.6 day 2

\#1b. Find an equation of the tangent plane to the given parametric surface at the specified point.
$\vec{r}(u, v)=\left\langle u^{2}, 2 u \sin v, u \cos v\right\rangle$
$(1,0,1)$
\#2b. Find the area of the surface: the part of the plane $2 x+5 y+z=10$ that lies inside the cylinder $x^{2}+y^{2}=9$.
\#3b. Find the area of the surface: the part of the surface $z=1+3 x+2 y^{2}$ that lies above the triangle with vertices $(0,0),(0,1)$, and $(2,1)$.
\#4b. Find the area of the surface: the part of the paraboloid $x=y^{2}+z^{2}$ that lies inside the cylinder $y^{2}+z^{2}=9$.

16.7 day 1

\#1b. Evaluate the surface integral $\iint_{S} y z d S$
S is the part of the plane $x+y+z=1$ that lies in the first octant.
\#2b. Evaluate the surface integral $\iint_{S} x^{2} z^{2} d S$
S is the part of the cone $z^{2}=x^{2}+y^{2}$ that lies between the planes $z=1$ and $z=3$.
\#3b. Evaluate the surface integral $\iint_{S}\left(z+x^{2} y\right) d S$
S is the part of the cylinder $y^{2}+z^{2}=1$ that lies between the planes $x=0$ and $x=3$ in the first octant.

16.7 day 2

\#1b. Evaluate the surface integral $\iint_{S} \vec{F} \cdot d S$
(find the flux of \vec{F} across S):
$\vec{F}(x, y, z)=\left\langle x z e^{y},-x z e^{y}, z\right\rangle$
S is the part of the plane $x+y+z=1$ in the first octant and has downward orientation.
\#2b. Evaluate the surface integral $\iint_{S} \vec{F} \cdot d S$
(find the flux of \vec{F} across S):
$\vec{F}(x, y, z)=\left\langle x y, 4 x^{2}, y z\right\rangle$
S is the surface $z=x e^{y}, 0 \leq x \leq 1,0 \leq y \leq 1$ with upward orientation.
\#3b. Evaluate the surface integral $\iint_{S} \vec{F} \cdot d S$
(find the flux of \vec{F} across S):
$\vec{F}(x, y, z)=\langle x z, x, y\rangle$
S is the hemisphere $x^{2}+y^{2}+z^{2}=25, \quad y \geq 0$ oriented in the direction of the positive y-axis.
\#4b. Evaluate the surface integral $\iint_{S} \vec{F} \cdot d S$
(find the flux of \vec{F} across S):
$\vec{F}(x, y, z)=\langle y, z-y, x\rangle$
S is the surface of the tetrahedron with vertices
$(0,0,0),(1,0,0),(0,1,0)$, and $(0,0,1)$.

16.8

\#1b. Using Stokes' Theorem, write out and evaluate the single-integral which is equivalent to the surface integral which calculates
$\iint_{S}($ curl $\vec{F}) \cdot d S$ where
$\vec{F}(x, y, z)=\left\langle x y z, x y, x^{2} y z\right\rangle$
S consists of the top and the four sides (but not the bottom) of the cube with vertices $(\pm 1, \pm 1, \pm 1)$ oriented outward.
\#2b. Using Stokes' Theorem, write out and evaluate the double-integral which is equivalent to the line integral $\int_{C} \vec{F} \cdot d \vec{r}$ which sums the contributions of the field \vec{F} along path C
$\vec{F}(x, y, z)=\left\langle y z, 2 x z, e^{x y}\right\rangle$
C is the circle $x^{2}+y^{2}=16, z=5$.
\#3b. Verify that Stokes' Theorem is true for the Double-integral side.... given vector field \vec{F} and surface S by writing out and evaluating integrals for both sides of the Stokes' Theorem equation.
$\vec{F}(x, y, z)=\langle y, z, x\rangle$
S is the hemisphere $x^{2}+y^{2}+z^{2}=1, y \geq 0$ oriented in the direction of the positive y-axis.
\#3b. Verify that Stokes' Theorem is true for the given vector field \vec{F} and surface S by writing out and evaluating integrals for both sides of the Stokes' Theorem equation.
$\vec{F}(x, y, z)=\langle y, z, x\rangle$
S is the hemisphere $x^{2}+y^{2}+z^{2}=1, y \geq 0$ oriented in the direction of the positive y-axis.

Extra \#4. A particle moves along line segments
from the origin to the points $(1,0,0),(1,2,1)$,
$(0,2,1)$, and back to the origin under the influence of the force field:
$\vec{F}(x, y, z)=\left\langle z^{2}, 2 x y, 4 y^{2}\right\rangle$
Find the work done.
\#1b Verify that the Divergence Theorem is true for Double-integral side.... the given vector field \vec{F} on the region E by writing out and evaluating integrals for both sides of the Divergence Theorem equation.
$\vec{F}(x, y, z)=\left\langle x^{2}, x y, z\right\rangle$
E is the solid bounded by the paraboloid $z=4-x^{2}-y^{2}$ and the $x y$-plane.
\#1b (continued) Verify that the Divergence
Theorem is true for the given vector field \vec{F} on the region E by writing out and evaluating integrals for both sides of the Divergence Theorem equation. $\vec{F}(x, y, z)=\left\langle x^{2}, x y, z\right\rangle$
E is the solid bounded by the paraboloid $z=4-x^{2}-y^{2}$ and the $x y$-plane.

Triple-integral side....
\#2b. Using the Divergence Theorem, write out and evaluate the triple-integral which is equivalent to the surface integral $\iint_{S} \vec{F} \cdot d S$ which calculates the flux of \vec{F} across S if
$\vec{F}(x, y, z)=\left\langle 3 x y^{2}, x e^{z}, z^{3}\right\rangle$
S is the surface of the solid bounded by the cylinder $y^{2}+z^{2}=1$ and the planes $x=-1$ and $x=2$.
\#3b. Using the Divergence Theorem, write out and evaluate the triple-integral which is equivalent to the surface integral $\iint_{S} \vec{F} \cdot d S$ which calculates the flux of \vec{F} across S if
$\vec{F}(x, y, z)=\left\langle 4 x^{3} z, 4 y^{3} z, 3 z^{4}\right\rangle$
S is the sphere with radius R and center at the origin.
\#3c. Using the Divergence Theorem, write out and evaluate the triple-integral which is equivalent to the surface integral $\iint_{S} \vec{F} \cdot d S$ which calculates the flux of \vec{F} across S if
$\vec{F}(x, y, z)=\langle x y \sin z, \cos (x z), y \cos z\rangle$
S is the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.
\#4b. A vector field \vec{F} is shown.

(i) Determine whether is positive or negative at P_{1} and P_{2} just from looking at the field picture.
(ii) Given the $\vec{F}(x, y)=\left\langle x, y^{2}\right\rangle$ for this field, use the definition of divergence to verify your answers in part (i).

