14.6

#1b.Find the directional derivative of f at the given point in the direction indicated by the angle θ

 $f(x,y) = x^2 y^3 - y^4$, (2,1), $\theta = \frac{\pi}{4}$

#3b. Find the directional derivative of the function at the given point in the direction of the vector \vec{v} $g(p,q) = p^4 - p^2 q^3$, (2,1), $\vec{v} = \langle 1, 3 \rangle$

#2b. (i) Find the gradient of f. (ii) Evaluate the gradient at the point P. (iii) Find the rate of change of f at P in the direction of the vector \overrightarrow{u} .

$$f(x, y, z) = xe^{2yz}, P(3, 0, 2), \vec{u} = \left\langle \frac{2}{3}, -\frac{2}{3}, \frac{1}{3} \right\rangle$$

#4b. Find the directional derivative of the function at the given point in the direction of the vector \overrightarrow{v} $g(x,y,z) = (x+2y+3z)^{\frac{3}{2}}, (1,1,2), \quad \overrightarrow{v} = \langle 0, 2, -1 \rangle$ #5b. Find the directional derivative of f(x, y, z) = xy + yz + zx at P(1, -1, 3) in the direction of Q(2, 4, 5).

#6c. Find the maximum rate of change of f at the given point and the direction in which it occurs.

$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}, \quad (3, 6, -2)$$

#6b. Find the maximum rate of change of f at the given point and the direction in which it occurs. $f(x, y) = \sin(xy)$, (1,0)

#7b. Find all points at which the direction of fastest change of the function $f(x, y) = x^2 + 3xy + y^2$ is $\langle 2, 1 \rangle$.

#8b. (hints)

(i) south = $\langle 0, -1 \rangle$, find the directional derivative in this direction.

(ii) northwest = $\langle -1,1 \rangle$, but remember to make this a unit vector before finding the directional derivative.

(iii) max in direction of gradient. Rate is the magnitude of the gradient. To find angle above horizontal remember that the gradient is a slope, so you can make a triangle with gradient up for every 1 unit horizontally. #9b. For the given contour map draw the curve of steepest ascent starting at Q.

#10b. Sketch the gradient vector $\nabla f(5,2)$ for the function *f* whose level curves are shown.

#11b. Find an equation of the tangent plane to the given surface at the specified point. $x^2 - 2y^2 + z^2 + yz = 2$, (2,1,-1)

#1b. Suppose (1,1) is a critical point of a function f with continuous second derivatives. What can you say about f at (1,1)?

(i) $f_{xx}(1,1) = 4$, $f_{xy}(1,1) = 1$, $f_{yy}(1,1) = 2$ (ii) $f_{xx}(1,1) = 4$, $f_{xy}(1,1) = 3$, $f_{yy}(1,1) = 2$ #2b. Use the level curves in the figure to predict the location of the critical points of f and whether fhas a saddle point or local maximum or minimum at each critical point. Then use the Second Derivatives Test to confirm your predictions.

#3b. Find the local maximum and minimum values and saddle point(s) of the function.

 $f(x, y) = x^{4} + y^{4} - 4xy + 2$

#4b. Find the absolute maximum and minimum values of f on the set D.

f(x, y) = 3 + xy - x - 2y

D is the closed triangular region with vertices (1,0), (5,0), and (1,4).

#5b. Find the points on the cone $z^2 = x^2 + y^2$ that are closest to the point (4,2,0).

#6b. Find three positive numbers whose sum is 12 and whose sum of squares is as small as possible.

#7b. Find the dimensions of the rectangular parallelepiped with faces parallel to the coordinate plane that can be inscribed in the ellipsoid $16x^2 + 4y^2 + 9z^2 = 144$ which will maximize the volume inside the parallelepiped. 14.8

#1b. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.

$$f(x, y) = x^2 y;$$
 $x^2 + 2y^2 = 6$

#2b. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.

f(x, y, z, t) = x + y + z + t; $x^{2} + y^{2} + z^{2} + t^{2} = 1$

#3b. Consider the problem of maximizing the function f(x, y) = x subject to the constraint $y^2 + x^4 - x^3 = 0$

(i) Try using Lagrange multipliers to solve the problem.

(ii) Show that the minimum value is f(0,0)=0 but

the Lagrange condition $\nabla f(0,0) = \lambda \nabla g(0,0)$ is

not satisfied for any value of λ .

(iii) Explain why Lagrange multipliers fail to find the minimum value in this case.

Extra #4. The plane x + y + 2z = 2 intersects the paraboloid $z = x^2 + y^2$ in an ellipse. Find the points on this ellipse that are nearest to and farthest from the origin.