Calc III - Ch 14 Part 2 - Extra Practice

14.6

\#1b.Find the directional derivative of f at the given point in the direction indicated by the angle θ

$$
f(x, y)=x^{2} y^{3}-y^{4}, \quad(2,1), \quad \theta=\frac{\pi}{4}
$$

\#2b. (i) Find the gradient of f.
(ii) Evaluate the gradient at the point P.
(iii) Find the rate of change of f at P in the direction of the vector \vec{u}.
$f(x, y, z)=x e^{2 y z}, P(3,0,2), \vec{u}=\left\langle\frac{2}{3},-\frac{2}{3}, \frac{1}{3}\right\rangle$
\#3b. Find the directional derivative of the function at the given point in the direction of the vector \vec{v} $g(p, q)=p^{4}-p^{2} q^{3}$,
$(2,1), \quad \vec{v}=\langle 1,3\rangle$
\#5b. Find the directional derivative of $f(x, y, z)=x y+y z+z x$ at $P(1,-1,3)$ in the direction of $Q(2,4,5)$.
\#6c. Find the maximum rate of change of f at the given point and the direction in which it occurs. $f(x, y, z)=\sqrt{x^{2}+y^{2}+z^{2}}, \quad(3,6,-2)$
\#6b. Find the maximum rate of change of f at the given point and the direction in which it occurs.
$f(x, y)=\sin (x y), \quad(1,0)$
\#7b. Find all points at which the direction of fastest change of the function $f(x, y)=x^{2}+3 x y+y^{2}$ is $\langle 2,1\rangle$.
\#8b. (hints)
(i) south $=\langle 0,-1\rangle$, find the directional derivative in this direction.
(ii) northwest $=\langle-1,1\rangle$, but remember to make this a unit vector before finding the directional derivative.
(iii) max in direction of gradient. Rate is the magnitude of the gradient. To find angle above horizontal remember that the gradient is a slope, so you can make a triangle with gradient up for every 1 unit horizontally.
\#9b. For the given contour map draw the curve of steepest ascent starting at Q .

$\# 10$ b. Sketch the gradient vector $\nabla f(5,2)$ for the function f whose level curves are shown.

\#11b. Find an equation of the tangent plane to the given surface at the specified point.

$$
x^{2}-2 y^{2}+z^{2}+y z=2, \quad(2,1,-1)
$$

14.7

\#1b. Suppose $(1,1)$ is a critical point of a function f with continuous second derivatives. What can you say about f at $(1,1)$?
(i) $f_{x x}(1,1)=4, \quad f_{x y}(1,1)=1, \quad f_{y y}(1,1)=2$
(ii) $f_{x x}(1,1)=4, \quad f_{x y}(1,1)=3, \quad f_{y y}(1,1)=2$
\#2b. Use the level curves in the figure to predict the location of the critical points of f and whether f has a saddle point or local maximum or minimum at each critical point. Then use the Second Derivatives Test to confirm your predictions.

$$
f(x, y)=3 x-x^{3}-2 y^{2}+y^{4}
$$

\#3b. Find the local maximum and minimum values and saddle point(s) of the function.

$$
f(x, y)=x^{4}+y^{4}-4 x y+2
$$

\#4b. Find the absolute maximum and minimum values of f on the set D.
$f(x, y)=3+x y-x-2 y$
D is the closed triangular region with vertices $(1,0)$, $(5,0)$, and $(1,4)$.
\#5b. Find the points on the cone $z^{2}=x^{2}+y^{2}$ that are closest to the point $(4,2,0)$.
\#6b. Find three positive numbers whose sum is 12 and whose sum of squares is as small as possible.
\#7b. Find the dimensions of the rectangular parallelepiped with faces parallel to the coordinate plane that can be inscribed in the ellipsoid $16 x^{2}+4 y^{2}+9 z^{2}=144$ which will maximize the volume inside the parallelepiped.
\#1b. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.
$f(x, y)=x^{2} y ; \quad x^{2}+2 y^{2}=6$
\#2b. Use Lagrange multipliers to find the maximum and minimum values of the function subject to the given constraint.

$$
f(x, y, z, t)=x+y+z+t ; \quad x^{2}+y^{2}+z^{2}+t^{2}=1
$$

\#3b. Consider the problem of maximizing the function $f(x, y)=x$ subject to the constraint

$$
y^{2}+x^{4}-x^{3}=0
$$

(i) Try using Lagrange multipliers to solve the problem.
(ii) Show that the minimum value is $f(0,0)=0$ but the Lagrange condition $\nabla f(0,0)=\lambda \nabla g(0,0)$ is not satisfied for any value of λ.
(iii) Explain why Lagrange multipliers fail to find the minimum value in this case.

Extra \#4. The plane $x+y+2 z=2$ intersects the paraboloid $z=x^{2}+y^{2}$ in an ellipse. Find the points on this ellipse that are nearest to and farthest from the origin.

