14.1

#1b. The wave heights h in the open sea depend on the speed v of the wind and the length of time tthat the wind has been blowing at that speed. Values of the function h = f(v,t) are recorded in feet in the following table: Duration (hours)

	v	5	10	15	20	30	40	50
	10	2	2	2	2	2	2	2
	15	4	4	5	5	5	5	5
	20	5	7	8	8	9	9	9
	30	9	13	16	17	18	19	19
	40	14	21	25	28	31	33	33
	50	19	29	36	40	45	48	50
ſ	60	24	37	47	54	62	67	69

(i) What is the value of f(40, 15)? What is its meaning?

(ii) What is the meaning of the function

h = f(30, t)? Describe the behavior of this function.

(iii) What is the meaning of the function

h = f(v, 30)? Describe the behavior of this function.

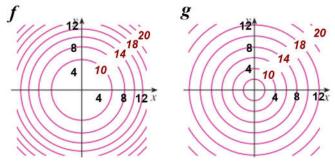
- #2b. Let $f(x, y) = \ln(x + y 1)$.
- (i) Evaluate f(1, 1) and f(e, 1).
- (ii) Find the domain of f.
- (iii) Find the range of f.

#3b. Sketch the graph of the function $f(x, y) = \sqrt{16 - x^2 - 16y^2}$.

#3c. Sketch the graph of the function f(x, y) = 3.

#4b. Contour maps for function f and g are shown. Use these to estimate the values of

f(8,8) and g(9,2). One of these is a cone and the other a paraboloid – which is which?



#5b. Draw a contour map of the function showing several level curves: $f(x, y) = x^3 - y$.

#6b. Describe the level surfaces of the function $f(x, y, z) = x^2 - y^2 + z^2$.

#1b. Find the limit, if it exists, or show that the limit does not exist $\lim_{(x,y)\to(1,2)} (5x^3 - x^2y^2)$.

#3b. Find the limit, if it exists, or show that the limit does not exist $\lim_{(x,y)\to(0,0)} \frac{xy}{\sqrt{x^2+y^2}}$.

#2b. Find the limit, if it exists, or show that the limit does not exist $\lim_{(x,y)\to(0,0)} \frac{xy\cos y}{3x^2 + y^2}.$

#1b. The wave heights h in the open sea depend on the speed v of the wind and the length of time tthat the wind has been blowing at that speed. Values of the function h = f(v, t) are recorded in feet in the following table:

		1	Juration	(nours)			
v '	5	10	15	20	30	40	50
10	2	2	2	2	2	2	2
15	4	4	5	5	5	5	5
20	5	7	8	8	9	9	9
30	9	13	16	17	18	19	19
40	14	21	25	28	31	33	33
50	19	29	36	40	45	48	50
60	24	37	47	54	62	67	69

Duration (hours)

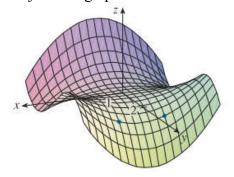
(i) Estimate the values of

 $f_t(40, 15)$ and $f_v(40, 15)$. What are the practice interpretations of these values?

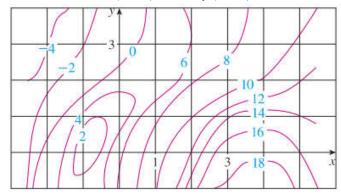
(ii) What are the meanings of the partial derivatives $\frac{\partial h}{\partial t}$ and $\frac{\partial h}{\partial t}$?

limit? $\lim_{t\to\infty}\frac{\partial h}{\partial t}$

#2b. Determine the signs of the partial derivatives $f_x(-1,2)$, $f_y(-1,2)$, and $f_{yy}(-1,2)$ for the function *f* whose graph is shown.



#3b. A contour map is given for a function f. Use it to estimate $f_x(-1,3)$ and $f_y(-1,3)$



#4b. Find both first partial derivatives of the function $f(x, y) = 2xy^2 - 3x$

#5b. Find both first partial derivatives of the function $z = x^{y}$

#8b. Find
$$f_z\left(0,0,\frac{\pi}{4}\right)$$
 for
 $f(x,y,z) = \sqrt{\sin^2 x + \sin^2 y + \sin^2 z}$

#6b. Find both first partial derivatives of the function $f(x, y) = \int_{x}^{y} e^{t^2} dt$

#9b. Verify that the conclusion of Clariaut's Theorem hold (that $u_{xy} = u_{yx}$) $u = \ln(\sqrt{x^2 + y^2})$

#7b. Find both first partial derivatives of the function $p = ze^{xyz}$

14.4

#1b. Find an equation of the tangent plane to the given surface at the specified point

$$z = 3(x-1)^{2} + 2(y+3)^{2} + 7, (2,-2,12).$$

#3b. Explain why the function is differentiable at the given point. Then find the linearization L(x,y) of the function at that point.

$$f(x,y) = \frac{x}{x+y}, \quad (2,1).$$

#2b. Find an equation of the tangent plane to the given surface at the specified point $\frac{1}{2}$

 $z = e^{x^2 - y^2}, (1, -1, 1).$

#4b. Find the differential of the function. $v = y \cos xy$.

#5b. Verify the linear approximation at (0,0).

 $\sqrt{y + \cos^2 x} \approx 1 + \frac{1}{2} y.$

#6b. If $z = x^2 - xy + 3y^2$ and (x, y) changes from (3, -1) to (2.96, -0.95), compare the values of Δz and dz.

#1b. Use the Chain Rule to find $\frac{dz}{dt}$ $z = \sqrt{1 + x^2 + y^2}$, $x = \ln t$, $y = \cos t$. #3b. Use a tree diagram to write out the Chain Rule for the given case. Assume all functions are differentiable.

$$w = f(r, s, t), r = r(x, y), s = s(x, y), t = t(x, y)$$

#2b. Use the Chain Rule to find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ $z = \sin \theta \cos \phi$, $\theta = st^2$, $\phi = s^2 t$. #4b. Use the Chain Rule to find the indicated partial derivatives $R = \ln(u^2 + v^2 + w^2), \quad u = x + 2y, \quad v = 2x - y, \quad w = 2xy$ $\frac{\partial R}{\partial x}, \quad \frac{\partial R}{\partial y} \quad when \quad x = y = 1$

#5b. Use
$$\frac{dy}{dx} = -\frac{\left(\frac{\partial F}{\partial x}\right)}{\left(\frac{\partial F}{\partial y}\right)} = -\frac{F_x}{F_y}$$
 to find $\frac{dy}{dx}$.
 $y^5 + x^2y^3 = 1 + ye^{x^2}$.

#6b. The pressure of 1 mole of an ideal gas is increasing at a rate of 0.05 kPa/s and the temperature is increasing at a rate of 0.15 K/s. Use the equation $P = 8.31 \frac{T}{V}$ to find the rate of change of the volume when the pressure is 20 kPa and the temperature is 320 K.

#Extra 7. If
$$z = f(x - y)$$
, show that $\frac{\partial z}{\partial x} + \frac{\partial z}{\partial y} = 0$.