14.1

\#1b. The wave heights h in the open sea depend on the speed v of the wind and the length of time t that the wind has been blowing at that speed.
Values of the function $h=f(v, t)$ are recorded in feet in the following table:

v	5	10	15	20	30	40	50
10	2	2	2	2	2	2	2
15	4	4	5	5	5	5	5
20	5	7	8	8	9	9	9
30	9	13	16	17	18	19	19
40	14	21	25	28	31	33	33
50	19	29	36	40	45	48	50
60	24	37	47	54	62	67	69

(i) What is the value of $f(40,15)$? What is its meaning?
(ii) What is the meaning of the function
$h=f(30, t)$? Describe the behavior of this function.
(iii) What is the meaning of the function $h=f(v, 30)$? Describe the behavior of this function.
\#2b. Let $f(x, y)=\ln (x+y-1)$.
(i) Evaluate $f(1,1)$ and $f(e, 1)$.
(ii) Find the domain of f.
(iii) Find the range of f.
\#3b. Sketch the graph of the function $f(x, y)=\sqrt{16-x^{2}-16 y^{2}}$.
$\# 3$ c. Sketch the graph of the function $f(x, y)=3$.
\#4b. Contour maps for function f and g are shown. Use these to estimate the values of $f(8,8)$ and $g(9,2)$. One of these is a cone and the other a paraboloid - which is which?

\#5b. Draw a contour map of the function showing several level curves: $f(x, y)=x^{3}-y$.
\#6b. Describe the level surfaces of the function $f(x, y, z)=x^{2}-y^{2}+z^{2}$.

14.2

\#1b. Find the limit, if it exists, or show that the limit does not exist $\lim _{(x, y) \rightarrow(1,2)}\left(5 x^{3}-x^{2} y^{2}\right)$.
\#3b. Find the limit, if it exists, or show that the limit does not exist $\lim _{(x, y) \rightarrow(0,0)} \frac{x y}{\sqrt{x^{2}+y^{2}}}$.
\#2b. Find the limit, if it exists, or show that the limit does not exist $\lim _{(x, y) \rightarrow(0,0)} \frac{x y \cos y}{3 x^{2}+y^{2}}$.

14.3

\#1b. The wave heights h in the open sea depend on the speed v of the wind and the length of time t that the wind has been blowing at that speed.
Values of the function $h=f(v, t)$ are recorded in feet in the following table:

v	5	10	15	20	30	40	50
10	2	2	2	2	2	2	2
15	4	4	5	5	5	5	5
20	5	7	8	8	9	9	9
30	9	13	16	17	18	19	19
40	14	21	25	28	31	33	33
50	19	29	36	40	45	48	50
60	24	37	47	54	62	67	69

(i) Estimate the values of $f_{t}(40,15)$ and $f_{v}(40,15)$. What are the practice interpretations of these values?
(ii) What are the meanings of the partial derivatives $\frac{\partial h}{\partial t}$ and $\frac{\partial h}{\partial v}$?
(iii) What appear to be the value of the following limit? $\lim _{t \rightarrow \infty} \frac{\partial h}{\partial t}$
\#2b. Determine the signs of the partial derivatives $f_{x}(-1,2), f_{y}(-1,2)$, and $f_{y y}(-1,2)$ for the function f whose graph is shown.

\#3b. A contour map is given for a function f. Use it to estimate $f_{x}(-1,3)$ and $f_{y}(-1,3)$

\#4b. Find both first partial derivatives of the function $f(x, y)=2 x y^{2}-3 x$
\#5b. Find both first partial derivatives of the function $z=x^{y}$
\#8b. Find $f_{z}\left(0,0, \frac{\pi}{4}\right)$ for

$$
f(x, y, z)=\sqrt{\sin ^{2} x+\sin ^{2} y+\sin ^{2} z}
$$

\#6b. Find both first partial derivatives of the function $f(x, y)=\int_{x}^{y} e^{t^{2}} d t$
\#9b. Verify that the conclusion of Clariaut's Theorem hold (that $u_{x y}=u_{y x}$) $u=\ln \left(\sqrt{x^{2}+y^{2}}\right)$
\#7b. Find both first partial derivatives of the function $p=z e^{x y z}$

14.4

\#1b. Find an equation of the tangent plane to the given surface at the specified point
$z=3(x-1)^{2}+2(y+3)^{2}+7, \quad(2,-2,12)$.
\#2b. Find an equation of the tangent plane to the given surface at the specified point
$z=e^{x^{2}-y^{2}},(1,-1,1)$.
\#3b. Explain why the function is differentiable at the given point. Then find the linearization $L(x, y)$ of the function at that point.
$f(x, y)=\frac{x}{x+y},(2,1)$.
\#4b. Find the differential of the function. $v=y \cos x y$.
$\# 5$ b. Verify the linear approximation at $(0,0)$.
$\sqrt{y+\cos ^{2} x} \approx 1+\frac{1}{2} y$.
\#6b. If $z=x^{2}-x y+3 y^{2}$ and (x, y) changes from $(3,-1)$ to $(2.96,-0.95)$, compare the values of Δz and $d z$.

14.5

\#1b. Use the Chain Rule to find $\frac{d z}{d t}$ $z=\sqrt{1+x^{2}+y^{2}}, \quad x=\ln t, \quad y=\cos t$.
\#2b. Use the Chain Rule to find $\frac{\partial z}{\partial s}$ and $\frac{\partial z}{\partial t}$ $z=\sin \theta \cos \phi, \quad \theta=s t^{2}, \quad \phi=s^{2} t$.
\#3b. Use a tree diagram to write out the Chain Rule for the given case. Assume all functions are differentiable.

$$
w=f(r, s, t), \quad r=r(x, y), \quad s=s(x, y), \quad t=t(x, y)
$$

\#4b. Use the Chain Rule to find the indicated partial derivatives

$$
R=\ln \left(u^{2}+v^{2}+w^{2}\right), \quad u=x+2 y, \quad v=2 x-y, w=2 x y
$$

$$
\frac{\partial R}{\partial x}, \frac{\partial R}{\partial y} \text { when } x=y=1
$$

\#5b. Use $\frac{d y}{d x}=-\frac{\left(\frac{\partial F}{\partial x}\right)}{\left(\frac{\partial F}{\partial y}\right)}=-\frac{F_{x}}{F_{y}}$ to find $\frac{d y}{d x}$. $y^{5}+x^{2} y^{3}=1+y e^{x^{2}}$.
\#6b. The pressure of 1 mole of an ideal gas is increasing at a rate of $0.05 \mathrm{kPa} / \mathrm{s}$ and the temperature is increasing at a rate of $0.15 \mathrm{~K} / \mathrm{s}$. Use the equation $P=8.31 \frac{T}{V}$ to find the rate of change of the volume when the pressure is 20 kPa and the temperature is 320 K .
\#Extra 7. If $z=f(x-y)$, show that $\frac{\partial z}{\partial x}+\frac{\partial z}{\partial y}=0$.

