Calc III - Ch 13 - Extra Practice

\#1b. Find the domain of the vector function $\vec{r}(t)=\left\langle\frac{t-2}{t+2}, \sqrt{t+3}, \ln \left(9-t^{2}\right)\right\rangle$.
\#2b. Find the limit: $\lim _{t \rightarrow \infty}\left\langle\arctan (t), e^{-2 t}, \frac{\ln (t)}{t}\right\rangle$.
\#3b. Sketch the curve with the given vector equation. Indicate with an arrow the direction in which t increases: $\vec{r}(t)=\left\langle t^{3}, t^{2}\right\rangle$.
\#4b. Find a vector equation and parametric equations for the line segment that joins P to Q : $P(1,-1,2), Q(4,1,7)$.
\#5b. Sketch in 3D the parametric curve given by the parametric equations:

$$
x=e^{-t} \cos 10 t, \quad y=e^{-t} \sin 10 t, \quad z=e^{-t}
$$

\#6b. At what points does the helix
$\vec{r}(t)=\langle\sin t, \cos t, t\rangle$ intersect the sphere $x^{2}+y^{2}+z^{2}=5$?
13.2
\#1b. For $\vec{r}(t)=\left\langle t-2, t^{2}+1\right\rangle$
(i) Sketch the plane curve.
(ii) Find $\overrightarrow{r^{\prime}}(t)$
(iii) On your plane curve sketch, add sketches for $\vec{r}(-1)$ and $\overrightarrow{r^{\prime}}(-1)$
\#2b. Find the derivative of $\vec{r}(t)=\left\langle e^{t^{2}},-1, \ln (1+3 t)\right\rangle$
\#3b. Find the derivative of
$\vec{r}(t)=\left\langle t \cos t, t^{3}+2 t, \sqrt{t^{3}-5 t}\right\rangle$
\#5b. If $\vec{r}(t)=\left\langle t^{3}, 2 t^{2}, t\right\rangle$, find $\overrightarrow{r^{\prime}}(t), \vec{T}(1), \overrightarrow{r^{\prime \prime}}(t)$ and $\overrightarrow{r^{\prime}}(t) x \overrightarrow{r^{\prime \prime}}(t)$
\#4b. Find the unit tangent vector $\vec{T}(t)$ at the point with the given value of the parameter t. $\vec{r}(t)=\left\langle t e^{-t}, 2 \arctan t, 2 e^{t}\right\rangle, t=0$
\#6b. Find parametric equations for the tangent line to the curve with the given parametric equations at the specified point.
$x=t, \quad y=e^{-t}, \quad z=2 t-t^{2} \quad(0,1,0)$
\#7b. At what point do the curves
$\overrightarrow{r_{1}}(t)=\left\langle t, 1-t, 3+t^{2}\right\rangle$ and
$\overrightarrow{r_{2}}(s)=\left\langle 3-s, s-2, s^{2}\right\rangle$ intersect? Find their angle of intersection correct to the nearest degree.
\#8b. Evaluate the integral: $\int_{1}^{2}\left\langle 9 t^{3}, 6 t^{2}, 3\right\rangle d t$

13.3

\#1b. Find the length of the curve $\vec{r}(t)=\left\langle 2 t, t^{2}, \frac{1}{3} t^{3}\right\rangle, \quad 0 \leq t \leq 1$
\#2b. Reparametrize the curve
$\vec{r}(t)=\left\langle e^{2 t} \cos 2 t, \quad 2, \quad e^{2 t} \sin 2 t\right\rangle$ with respect to arc length measured from the point where $t=0$ in the direction of increasing t.
\#3b. Find the unit tangent vector $\vec{T}(t)$, the unit normal vector $\vec{N}(t)$, and the curvature κ for $\vec{r}(t)=\left\langle t^{2}, \quad \sin t-t \cos t, \quad \cos t+t \sin t\right\rangle, t>0$.
\#4b. Find the curvature κ for $\vec{r}(t)=\langle 3 t, 4 \sin t, \quad 4 \cos t\rangle$.
$\# 5$ b. Find the curvature κ for $y=4 x^{5 / 2}$.
\#6b. Given the curve:

(i) Is the curvature of the curve C shown in the figure greater at P or at Q ? Explain.
(ii) Estimate the curvature at P and at Q by sketching the osculating circles at those points.
\#8b. Find equations of the normal plane and the osculating plane of the curve at the given point: $x=t, y=t^{2}, z=t^{3}$ at $(1,1,1)$.

13.4

\#1b. Find the velocity, acceleration, and speed of a particle with the given position function. Sketch the path of the particle and draw the velocity and acceleration vectors for the specified value of t.

$$
\vec{r}(t)=\langle 3 \cos t, 2 \sin t\rangle, \quad t=\frac{\pi}{3}
$$

\#3b. Find the position vector of a particle that has the given acceleration and the specified initial velocity and position:

$$
\vec{a}(t)=\left\langle t, e^{t}, e^{-t}\right\rangle, \vec{v}(0)=\langle 0,0,1\rangle, \vec{r}(0)=\langle 0,1,1\rangle
$$

\#2b. Find the velocity, acceleration, and speed of a particle with the given position function.

$$
\vec{r}(t)=\left\langle\sqrt{2} t, \quad e^{t}, \quad e^{-t}\right\rangle
$$

\#4b. The position function of a particle is given by $\vec{r}(t)=\left\langle 3 t^{2}, 4 t, t^{2}-9 t\right\rangle$. When is the speed a minimum?
\#5b. A projectile is fired from a position 200 m above the ground with an initial speed of $500 \mathrm{~m} / \mathrm{s}$ and angle of elevation of 30°. Find (i) the range of the projectile, (ii) the maximum height reached, and (iii) the speed at impact.
\#6b. A gun is fired from the ground with angle of elevation 30°. What is the muzzle speed (initial projectile speed) if the maximum height of the shell is 500 m ?
\#7b. (Very challenging) A medieval city has the shape of a square and is protected by walls with length 500 m and height 15 m . You are the commander of an attacking army and the closest you can get to the wall is 100 m . Your plan is to set fire to the city by catapulting heated rocks over the wall (with and initial speed of $80 \mathrm{~m} / \mathrm{s}$). At what range of angles should you tell your army to set the catapult? (Assume the path of the rocks is perpendicular to the wall).

