\qquad
NOTE: Read each problem carefully...most require setup of integral only, but some require evaluation. Use the formulas provided in the problem.
\#1a) Find $\operatorname{div} \vec{F}$ and curl \vec{F} if $\vec{F}(x, y, z)=\left\langle x^{2} y z, \quad x y^{2} z, \quad x y z^{2}\right\rangle$

$$
\vec{F}=\langle P, Q, R\rangle
$$

$$
\operatorname{div} \vec{F}=\nabla \cdot \vec{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}
$$

$$
\operatorname{curl} \vec{F}=\nabla x \vec{F}=\left|\begin{array}{ccc}
+ & - & + \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
P & Q & R
\end{array}\right|
$$

\#1b) Find $\operatorname{div} \vec{F}$ and curl \vec{F} if $\vec{F}(x, y, z)=\langle 1, x+y z, \quad x y-\sqrt{z}\rangle$
\#2a) Determine whether or not $\vec{F}(x, y)=\left\langle e^{x} \cos y, e^{x} \sin y\right\rangle$ is conservative. If it is, find the potential function f such that $\nabla f=\vec{F}$.
conservative if $\frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x}$
$\int_{C}^{\vec{F}} \cdot d r=f($ end $)-f($ start $)$
\#2b) Determine whether or not $\vec{F}(x, y)=\left\langle e^{x} \sin y, e^{x} \cos y\right\rangle$ is conservative.
If it is, find the potential function f such that $\nabla f=\vec{F}$.
\#2c) Determine whether or not $\vec{F}(x, y)=\left\langle 3 x^{2}+2 y^{2}, 4 x y+3\right\rangle$ is conservative. If it is, find the potential function f such that $\nabla f=\vec{F}$.

$$
\begin{gathered}
\iint_{S} f(x, y, z) d S=\iint_{D} f(x, y, g(x, y)) \sqrt{1+\left(\frac{\partial g}{\partial x}\right)^{2}+\left(\frac{\partial g}{\partial y}\right)^{2}} d A \\
\iint_{S} f(x, y, z) d S=\iint_{D} f(\vec{r}(u, v))\left|\overrightarrow{r_{u}} x \overrightarrow{r_{v}}\right| d A
\end{gathered}
$$

\#3a) Set up the integral to find the surface area of the part of the plane $3 x+2 y+z=6$ that lies in the first octant. (Do not evaluate the integral)
\#3b) Set up the integral to find the surface area of the part of the plane with vector equation $\vec{r}(u, v)=\langle 1+v, u-2 v, 3-5 u+v\rangle$ that is given by $0 \leq u \leq 1, \quad 0 \leq v \leq 1$. (Do not evaluate the integral)
\#3c) Set up the integral to find the surface area of the part of the paraboloid $z=x^{2}+y^{2}$ that lies inside the cylinder $x^{2}+y^{2}=4$.
(Do not evaluate the integral)
\#3d) Set up the integral to find the surface area of the part of the plane $z=4-y$ that lies inside the cylinder $x^{2}+y^{2}=4$.
(Do not evaluate the integral)

> | Scalar |
| :---: |
| Integrand | $\int_{C} f(x, y, z) \cdot d s=\int_{a}^{b} f(\vec{r}(t))\left|\overrightarrow{r^{\prime}}(t)\right| d t$

\#4a) Set up the integral to evaluate $\int_{C} y^{3} d s$ if C is defined by: $x=t^{3}, y=t$ for $0 \leq t \leq 2$. (Do not evaluate the integral)
\#4b) Set up the integral to evaluate $\int_{C} x y d s$ if C is defined by: $x=t^{2}, y=2 t$ for $0 \leq t \leq 1$. (Do not evaluate the integral)

$$
\begin{aligned}
& \text { conservative if } \frac{\partial P}{\partial y}=\frac{\partial Q}{\partial x} \\
& \int_{C} \vec{F} \cdot d r=f(\text { end })-f(\text { start })
\end{aligned}
$$

\#5a) Set up and evaluate $\int_{C} \vec{F} \cdot \overrightarrow{d r}$ for $\vec{F}=\left\langle x^{2}, y^{2}\right\rangle$ along curve C defined by the arc of the parabola $y=2 x^{2}$ from $(-1,2)$ to $(2,8)$.
(hint: check to see if this field is conservative)
(NOTE: You must also evaluate this integral)
\#5b) Set up and evaluate $\int_{C} \vec{F} \cdot \overrightarrow{d r}$ for $\vec{F}=\left\langle x y^{2}, x^{2} y\right\rangle$ along curve C defined by $\vec{r}(t)=\left\langle t+\sin \left(\frac{1}{2} \pi t\right), \quad t+\cos \left(\frac{1}{2} \pi t\right)\right\rangle, \quad 0 \leq t \leq 1$
(hint: check to see if this field is conservative)
(NOTE: You must also evaluate this integral)

$$
\begin{gathered}
\text { Green's } \\
\text { Theorem }
\end{gathered} \oint_{C} \vec{F} \cdot \overrightarrow{d r}=\oiint_{D}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) d A
$$

\#6a) Set up the line integral $\int_{C}(x y) d x+\left(x^{2} y^{3}\right) d y$ along C which traces the path around a triangle from $(0,0)$ to $(1,0)$ to $(1,2)$ and back to $(0,0)$. (Do not evaluate the integral)
\#6b) Set up the line integral $\int_{C}\left(x y^{2}\right) d x+\left(2 x^{2} y\right) d y$ along C which traces the path around a triangle from $(0,0)$ to $(2,2)$ to $(2,4)$ and back to $(0,0)$.
(Do not evaluate the integral)

$$
\begin{aligned}
\text { tangent plane } \vec{n}=\overrightarrow{r_{u}} x \overrightarrow{r_{v}} \\
a x+b y+c z=\vec{n} \cdot \overrightarrow{r_{0}}
\end{aligned}
$$

\#7a) Find the equation of the tangent plane to the parametric surface defined by $x=u+v, y=3 u^{2}, z=u-v$ at $(2,3,0)$.
\#7b) Find the equation of the tangent plane to the parametric surface defined by $x=u^{2}, y=v^{2}, z=u v$ at $u=1, v=1$.

$$
\iint_{S} f(x, y, z) d S=\iint_{D} f(x, y, g(x, y)) \sqrt{1+\left(\frac{\partial g}{\partial x}\right)^{2}+\left(\frac{\partial g}{\partial y}\right)^{2}} d A
$$

\#8a) Set up the surface integral $\int_{S}(z) d S$ where S is the part of the paraboloid $z=x^{2}+y^{2}$ that lies inside the cylinder $x^{2}+y^{2}=4$. (Do not evaluate the integral)
\#8b) Set up the surface integral $\int_{S}(x z) d S$ where S is the part of the paraboloid $z=16-x^{2}-y^{2}$ that lies above the plane $z=7$.
(Do not evaluate the integral)
\qquad

NOTE: On all problems, set up the integrals including limits of integration but do not evaluate.
\#1a) Set up the integral to evaluate the flux of \vec{F} over S if $\vec{F}=\langle x y, y z, z x\rangle$ and S is the part of the paraboloid

$$
\iint_{S} \vec{F} \cdot \overrightarrow{d S}=\iint_{D} \vec{F} \cdot\left(\overrightarrow{r_{u}} x \overrightarrow{r_{v}}\right) d A
$$ $z=4-x^{2}-y^{2}$ that lies above the square $0 \leq x \leq 1,0 \leq y \leq 1$ and has upward orientation.

\#1b) Set up the integral to evaluate the flux of \vec{F} over S if $\vec{F}=\left\langle x^{2}, x y, z\right\rangle$ and S is the part of the paraboloid $z=x^{2}+y^{2}$ that lies below the plane $z=1$ with upward orientation.

$$
\begin{gathered}
\text { Divergence }: \iint_{S} \vec{F} \cdot \overrightarrow{A S}=\iiint_{E} d i v \vec{F} d V \\
\quad \operatorname{div} \vec{F}=\nabla \cdot \vec{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}
\end{gathered}
$$

\#2a) Using the Divergence Theorem, write the triple-integral which is equivalent to the surface integral $\iint_{S} \vec{F} \cdot \overrightarrow{d S}$ which calculates the flux of \vec{F} across S if $\vec{F}=\left\langle x^{2}, x y, z\right\rangle$ and S is the part of the paraboloid $z=x^{2}+y^{2}$ that lies below the plane $z=1$. (You must set up the integral for the triple-integral side)
\#2b) Using the Divergence Theorem, write the triple-integral which is equivalent to the surface integral $\iint_{S} \vec{F} \cdot \overrightarrow{d S}$ which calculates the flux of \vec{F} across S if $\vec{F}=\left\langle x^{2},-x^{2} y z, 2 x y^{2}\right\rangle$ and S is the cylinder $x^{2}+y^{2}=4$ between the planes $z=x+4$ and $z=0 . \quad$ (You must set up the integral for the triple-integral side)

$$
\begin{gathered}
\text { Stokes' } \\
\text { Theorem }
\end{gathered} \iint_{S}(\text { curl } \vec{F}) \cdot \vec{n} d A=\int_{a}^{b} \vec{F}(\vec{r}(t)) \cdot \overrightarrow{r^{\prime}}(t) d t
$$

\#3a) Using Stokes' Theorem, write the single-integral which is equivalent to the surface integral which calculates $\iint_{S}(\operatorname{curl} \vec{F}) \cdot \overrightarrow{d S}$ where $\vec{F}=\left\langle x^{2} z^{2}, y^{2} z^{2}, x y z\right\rangle$ and S is the part of the paraboloid $z=x^{2}+y^{2}$ that inside the cylinder $x^{2}+y^{2}=4$ and is oriented upward. (You must set up the integral for the single-integral side)
\#3b) Using Stokes' Theorem, write the single-integral which is equivalent to the surface integral which calculates $\iint_{S}(\operatorname{curl} \vec{F}) \cdot \overrightarrow{d S}$ where $\vec{F}=\left\langle 2 x^{2}, \quad-2 y^{2}, \quad x^{2} z\right\rangle$ and
S is the part of the sphere $x^{2}+y^{2}+z^{2}=13$ that lies above the plane $z=3$ and is oriented upward. (You must set up the integral for the single-integral side)

$$
\begin{gathered}
\text { Divergence }: \iint_{S} \vec{F} \cdot \overrightarrow{d S}=\iiint_{E} d i v \vec{F} d V \\
\quad \operatorname{div} \vec{F}=\nabla \cdot \vec{F}=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}+\frac{\partial R}{\partial z}
\end{gathered}
$$

\#4) Using the Divergence Theorem, write the triple-integral which is equivalent to the surface integral $\iint_{S} \vec{F} \cdot \overrightarrow{d S}$ which calculates the flux of \vec{F} across S if
$\vec{F}=\left\langle 3 x^{2}, x y z, \quad z^{3}\right\rangle$ and S is the surface of a sphere of radius 9 centered at the origin. (You must set up the integral for the triple-integral side)

$$
\begin{array}{r}
\text { Stokes' }: \int_{C}^{\vec{F}} \cdot d r=\iint_{S}(\text { curl } \vec{F}) \cdot \vec{n} d A \\
\text { curl } \vec{F}=\nabla x \vec{F}=\left|\begin{array}{ccc}
+ & - & + \\
\partial / \partial x & \partial / \partial y & \partial / \partial z \\
P & Q & R
\end{array}\right|
\end{array}
$$

\#5a) Using Stokes' Theorem, write the double-integral which is equivalent to the line (path) integral $\int_{C} \vec{F} \cdot \overrightarrow{d r}$ which sums the contributions of the field $\vec{F}=\left\langle x^{2} z^{2}, \quad x^{2}, x y z\right\rangle$ along the path which is the intersection of the paraboloid $z=x^{2}+y^{2}$ and the cylinder $x^{2}+y^{2}=4$. (Assume the path is oriented such that the normal vector to the enclosed surface is in the 'upward' direction). (You must set up the integral for the double-integral side, but remember that you can choose any surface that is bounded by the curve of the given surface.)
\#5b) Using Stokes' Theorem, write the double-integral which is equivalent to the line (path) integral $\int_{C} \vec{F} \cdot \overrightarrow{d r}$ which sums the contributions of the field $\vec{F}=\left\langle x+y^{2}, \quad y+z^{2}, \quad z+x^{2}\right\rangle$ along the path which is the intersection of the sphere $x^{2}+y^{2}+z^{2}=13$ and the plane $z=3$. (Assume the path is oriented such that the normal vector is in the 'upward' direction). (You must set up the integral for the double-integral side, but remember that you can choose any surface that is bounded by the curve of the given surface.)

