2.3: Derivation of the solution method for first-order, linear differential equations

Start with the first-order, linear differential equation to solve: $\quad \frac{d y}{d x}+P(x) y=f(x)$
We use a property (not proved here) that the solution can be written as the sum of two solutions...

$$
y=y_{c}+y_{p}
$$

\ldots where y_{c} is the solution to the associated homogenous $\mathrm{DE}: \quad \frac{d y_{c}}{y_{c}}+P(x) d x=0$
...and y_{p} is a particular solution of the original nonhomogenous DE.
First, we plug this postulated solution into the original DE:

$$
\frac{d}{d x}\left[y_{c}+y_{p}\right]+P(x)\left(y_{c}+y_{p}\right)=f(x)
$$

Separating the c and p parts, we get...

$$
\left(\frac{d}{d x}\left[y_{c}\right]+P(x)\left(y_{c}\right)\right)+\left(\frac{d}{d x}\left[y_{p}\right]+P(x)\left(y_{p}\right)\right)=f(x)
$$

Because we defined y_{c} is the solution of the associated homogenous equation, the first bracketed term is zero, and therefore, the second bracketed term equals the original $f(x)$:

$$
\begin{aligned}
\left(\frac{d}{d x}\left[y_{c}\right]+P(x)\left(y_{c}\right)\right)+\left(\frac{d}{d x}\left[y_{p}\right]+P(x)\left(y_{p}\right)\right) & =f(x) \\
0+\quad+x(x) & =f(x)
\end{aligned}
$$

The purpose of this is the 'split off' the homogenous part, which turns out to be a separable DE:

$$
\begin{aligned}
& \frac{d y_{c}}{d x}+P(x) y_{c}=0 \\
& \frac{d y_{c}}{y_{c}}+P(x) d x=0
\end{aligned}
$$

...we can solve using the method of separable variables:

$$
\begin{aligned}
& \int \frac{1}{y_{c}} d y_{c}=-\int P(x) d x \\
& \ln \left|y_{c}\right|=-\int P(x) d x+C_{1} \\
& y_{c}=e^{-\int P(x) d x+C_{1}} \\
& y_{c}=e^{C_{1}} e^{-\int P(x) d x} \\
& y_{c}=C e^{-\int P(x) d x}
\end{aligned}
$$

The resulting solution contains this important exponential term (which we will refer to later):

$$
\text { an important factor: } e^{-\int P(x) d x}
$$

We now turn to solving the original DE by finding the particular solution y_{p}. If we allowed the integrating constant to instead be a function of x, we can define a particular solution:

$$
y_{p}=u(x) e^{-\int P(x) d x}
$$

Substituting this solution into the original DE...

$$
\begin{aligned}
& \frac{d y}{d x}+P(x) y=f(x) \\
& \frac{d}{d x}\left[u(x) e^{-\int P(x) d x}\right]+P(x)\left(u(x) e^{-\int P(x) d x}\right)=f(x)
\end{aligned}
$$

We need the product rule to evaluate the derivative of the first bracketed term:

$$
u(x) \frac{d}{d x}\left[e^{-\int P(x) d x}\right]+e^{-\int P(x) d x} \frac{d}{d x}[u(x)]+P(x)\left(u(x) e^{-\int P(x) d x}\right)=f(x)
$$

Regrouping and factoring out the $u(x)$ term:

$$
u(x)\left(\frac{d}{d x}\left[e^{-\int P(x) d x}\right]+P(x) e^{-\int P(x) d x}\right)+e^{-\int P(x) d x} \frac{d}{d x}[u(x)]=f(x)
$$

In the first term, replacing with the symbol y_{c} for the important factor...

$$
u(x)\left(\frac{d y_{c}}{d x}+P(x) y_{c}\right)+e^{-\int P(x) d x} \frac{d}{d x}[u(x)]=f(x)
$$

...and remembering that : $\frac{d y_{c}}{d x}+P(x) y_{c}=0$ means the first term goes to zero:

$$
\begin{aligned}
u(x)(0)+e^{-\int P(x) d x} \frac{d}{d x}[u(x)] & =f(x) \\
e^{-\int P(x) d x} \frac{d}{d x}[u(x)] & =f(x)
\end{aligned}
$$

Now, we can separate variables and integrate:

$$
\begin{aligned}
& d u=e^{\int P(x) d x} f(x) d x \\
& \int d u=\int e^{\int P(x) d x} f(x) d x \\
& u=\int e^{\int P(x) d x} f(x) d x
\end{aligned}
$$

...and this means our particular solution is:

$$
y_{p}=u e^{-\int P(x) d x}=\int e^{\int P(x) d x} f(x) d x \cdot e^{-\int P(x) d x}=e^{-\int P(x) d x} \int e^{\int P(x) d x} f(x) d x
$$

Which means the final solution we originally postulated is:
$y=y_{c}+y_{p}$
$y=C e^{-\int P(x) d x}+e^{-\int P(x) d x} \int e^{\int P(x) d x} f(x) d x$
If the original DE has a solution, it must be in this form. If we wish to check this, we can plug this into the original DE to verify that it is, indeed, a solution:

$$
\begin{aligned}
& \frac{d y}{d x}+P y=f(x) \\
& \frac{d}{d x}\left[C e^{-\int P(x) d x}+e^{-\int P(x) d x} \int e^{\int P(x) d x} f(x) d x\right]+P\left(C e^{-\int P(x) d x}+e^{-\int P(x) d x} \int e^{\int P(x) d x} f(x) d x\right)=f(x) \\
& \frac{d}{d x}\left[C e^{-\int P(x) d x}\right]+\frac{d}{d x}\left[e^{-\int P(x) d x} \int e^{\int P(x) d x} f(x) d x\right]+P\left(C e^{-\int P(x) d x}+e^{-\int P(x) d x} \int e^{\int P(x) d x} f(x) d x\right)=f(x)
\end{aligned}
$$

(product rule)

$$
\begin{aligned}
& C e^{-\int P(x) d x} \frac{d}{d x}\left[-\int P(x) d x\right]+e^{-\int P(x) d x} \frac{d}{d x}\left[\int e^{\int P(x) d x} f(x) d x\right]+\int e^{\int P(x) d x} f(x) d x \frac{d}{d x}\left[e^{-\int P(x) d x}\right] \\
& \quad+P(x)\left(C e^{-\int P(x) d x}+e^{-\int P(x) d x} \int e^{\int P(x) d x} f(x) d x\right)=f(x) \\
& -C e^{-\int P(x) d x} P(x)+e^{-\int P(x) d x} e^{\int P(x) d x} f(x)+\int e^{\int P(x) d x} f(x) d x\left(e^{-\int P(x) d x}\right)(-P(x))+P(x) C e^{-\int P(x) d x} \\
& \quad+P(x) e^{-\int P(x) d x} \int e^{\int P(x) d x} f(x) d x=f(x) \\
& \left(-C e^{-\int P(x) d x} P(x)+P(x) C e^{-\int P(x) d x}\right)+\left(P(x) e^{-\int P(x) d x} \int e^{\int P(x) d x} f(x) d x-P(x) e^{-\int P(x) d x} \int e^{\int P(x) d x} f(x) d x\right) \\
& \quad+e^{-\int P(x) d x} e^{\int P(x) d x} f(x)=f(x) \\
& (0)+(0)+e^{-\int P(x) d x} e^{\int P(x) d x} f(x)=f(x) \\
& e^{\int P(x) d x-\int P(x) d x} f(x)=f(x) \\
& e^{0} f(x)=f(x) \\
& f(x)=f(x) \text { verified }
\end{aligned}
$$

This is extremely convoluted, but is the procedure used to derive the solution form. Now that we know the solution form, we can use the results to define an easier-to-remember process to quickly find this solution, our 'solution procedure for first-order linear equations'.

During the above procedure, we encountered this important factor:

$$
\text { an important factor: } \quad e^{-\int P(x) d x}
$$

And we now define 1 divided by this factor, the integrating factor:

$$
\text { integrating factor (I.F.): } \frac{1}{e^{-\int P(x) d x}}=e^{\int P(x) d x}
$$

If we multiply what we now know is the solution form by the integrating factor we get:

$$
\begin{aligned}
& y=C e^{-\int P(x) d x}+e^{-\int P(x) d x} \int e^{\int P(x) d x} f(x) d x \\
& e^{\int P(x) d x} y=C e^{\int P(x) d x} e^{-\int P(x) d x}+e^{\int P(x) d x} e^{-\int P(x) d x} \int e^{\int P(x) d x} f(x) d x \\
& e^{\int P(x) d x} y=C e^{0}+e^{0} \int e^{\int P(x) d x} f(x) d x \\
& e^{\int P(x) d x} y=C+\int e^{\int P(x) d x} f(x) d x
\end{aligned}
$$

We can then differentiate both sides of this equation:
$\frac{d}{d x}\left[e^{\int P(x) d x} y\right]=\frac{d}{d x}[C]+\frac{d}{d x}\left[\int e^{\int P(x) d x} f(x) d x\right]$
(product rule)
$e^{\int P(x) d x} \frac{d}{d x}[y]+y \frac{d}{d x}\left[e^{\int P(x) d x}\right]=0+e^{\int P(x) d x} f(x)$
$e^{\int P(x) d x} \frac{d y}{d x}+y e^{\int P(x) d x} \frac{d}{d x}\left[\int P(x) d x\right]=e^{\int P(x) d x} f(x)$
$e^{\int P(x) d x} \frac{d y}{d x}+y P(x) e^{\int P(x) d x}=e^{\int P(x) d x} f(x)$
Dividing everything by the integrating factor, gives the original DE: $\quad \frac{d y}{d x}+P(x) y=f(x)$
...and this suggests a simple procedure for quickly finding the solution:

1) Put a linear equation in the form: $\frac{d y}{d x}+P(x) y=f(x)$
2) Identify $P(x)$ and use it to find the integrating factor: I.F. $=e^{\int P(x) d x}$
3) Multiply the standard form by the integrating factor. The left-hand side of the resulting equation is automatically the derivative of the integrating factor and y :

$$
\frac{d}{d x}\left[e^{\int P(x) d x} y\right]=e^{\int P(x) d x} f(x)
$$

4) Then just integrate both sides of this last equation to obtain the solution.
