
2.3: Derivation of the solution method for first-order, linear differential equations 

Start with the first-order, linear differential equation to solve:          
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We use a property (not proved here) that the solution can be written as the sum of two solutions… 
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…where cy is the solution to the associated homogenous DE:        0c

c

dy
P x dx

y
   

…and py  is a particular solution of the original nonhomogenous DE. 

First, we plug this postulated solution into the original DE: 
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Separating the c and p parts, we get… 
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Because we defined cy is the solution of the associated homogenous equation, the first bracketed term is zero, and 

therefore, the second bracketed term equals the original f(x): 

                       
          

   0

c c p p

d d
y P x y y P x y f x

dx dx

f x f x

   
        

   

 

 

The purpose of this is the ‘split off’ the homogenous part, which turns out to be a separable DE: 
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…we can solve using the method of separable variables: 
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The resulting solution contains this important exponential term (which we will refer to later): 
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We now turn to solving the original DE by finding the particular solution yp.    If we allowed the integrating constant to 

instead be a function of x, we can define a particular solution: 
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Substituting this solution into the original DE… 
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We need the product rule to evaluate the derivative of the first bracketed term: 
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Regrouping and factoring out the u(x) term: 
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In the first term, replacing with the symbol yc for the important factor… 
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…and remembering that :   0c
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   means the first term goes to zero: 
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Now, we can separate variables and integrate: 
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…and this means our particular solution is: 
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Which means the final solution we originally postulated is: 
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If the original DE has a solution, it must be in this form.  If we wish to check this, we can plug this into the original DE to 

verify that it is, indeed, a solution: 
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This is extremely convoluted, but is the procedure used to derive the solution form.  Now that we know the solution 

form, we can use the results to define an easier-to-remember process to quickly find this solution, our ‘solution 

procedure for first-order linear equations’. 

During the above procedure, we encountered this important factor: 
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And we now define 1 divided by this factor, the integrating factor: 
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If we multiply what we now know is the solution form by the integrating factor we get: 
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We can then differentiate both sides of this equation: 
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Dividing everything by the integrating factor, gives the original DE:         
dy

P x y f x
dx
   

…and this suggests a simple procedure for quickly finding the solution: 

1) Put a linear equation in the form:    
dy

P x y f x
dx

   

2) Identify P(x) and use it to find the integrating factor:  
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3) Multiply the standard form by the integrating factor.  The left-hand side of the resulting equation is automatically the 

derivative of the integrating factor and y: 
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4) Then just integrate both sides of this last equation to obtain the solution. 


