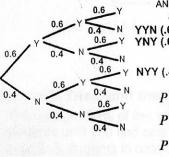
## AP Statistics - Lesson Notes - Chapter 17: Probability Models

### Bernoulli Trials and the Binomial Probability Model

At a college, 60% of the students voted in the latest election. If you select 3 students at random, what is the probability that exactly 2 voted in the election?



 $P(exactly\ 2\ voted) = P(YYN) + P(YNY) + P(NYY)$ 

$$P(exactly \ 2 \ voted) = (.6)(.6)(.4) + (.6)(.4)(.6) + (.4)(.6)(.6)$$

$$P(exactly \ 2 \ voted) = (.6)^{2} (.4)^{1} + (.6)^{2} (.4)^{1} + (.6)^{2} (.4)^{1}$$

$$P(exactly \ 2 \ voted) = 3(.6)^{2}(.4)^{1}$$

$$P(\text{exactly 2 voted}) = {}_{3}C_{2}(P(\text{voted}))^{2}(P(\text{didn't vote}))^{1}$$

number of ways the 2 students who voted can be chosen

multiple trials, all independent probability is constant

### Situations like this are called Bernoulli Trials

each trial only two options: "success" (voted), "failure" (did not vote)

If we are running a <u>fixed number of trials</u> (here, 3 students) the probability answer is always in the form...

$$P(exactly\ 2\ voted) = {}_{3}C_{2}(P(voted))^{2}(P(didn't\ vote))^{1}$$

...which looks like a term from a binomial theorem expansion, so this model is called the **Binomial probability model**. More generally:

$$P(\text{exactly } k \text{ successes}) = {}_{n}C_{k}(p)^{k}(q)^{n-k}$$

where n = number of trials

k = number of successes

p = probability of success for a single trial

q = probability of failure for a single trial

tweed:

At a college, 60% of the students voted in the latest election. If you select 3 students at random, what is the probability that exactly 2 voted in the election?

We use this model so often that there is a calculator function dedicated to it:

binompdf(3,.6,2)
= [.432]

Slightly different problem:

At a college, 60% of the students voted in the latest election. If you select 3 students at random, what is the probability that up to 2 voted in the election?

What are all the possibilities of number of students of 3 who voted?

0 voted

1 voted

2 voted

3 voted

binompdf(3, .6, 0) + binompdf(3, .6, 1) + binompdf(3, .6, 2)

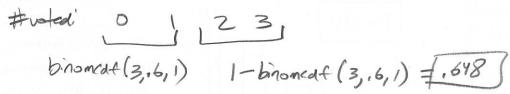
binomed (3,6)

binomcdf(3, .6, 2)

c for cumulative

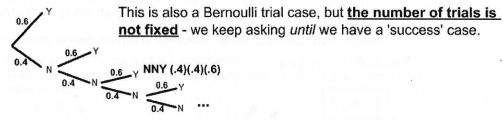
Another variation:

At a college, 60% of the students voted in the latest election. If you select 3 students at random, what is the probability that at least 2 voted in the election?



### Bernoulli Trials and the Geometric Probability Model

At a college, 60% of the students voted in the latest election. If you keep asking students until you find one that voted, what is the probability that you have to ask exactly 3 students in order to find one that voted?



The results is in the form  $P(exactly \ k \ successes) = (q)^{k-1}(p)$  and this is called the **Geometric probability model**.

Like the binomial model, there are calculator functions for computation:

probability that 1st success is on the kth trial geometpdf(p, k)

probability that 1st success is on or before the kth trial geometcdf(p, k)

At a college, 60% of the students voted in the latest election. If you keep asking students until you find one that voted, what is the probability that you have to ask more than 3 students in order to find one that voted?

#### **Bernoulli Trials**

Compare these three scenarios...

A) If you draw two cards from a deck, what is the probability they are kings?

B) If you flip a fair coin twice, what is the probability you get tails both times?

C) If the ball pit in a MacDonald's play area contains 10,000 balls, and 10% of them are green, what is the probability that if you randomly choose 2 balls from the pit they will both be green?

2.2 independent (Benoulli trial, Binomial)

to to empendent rule of thumb!

To to independent it surple is \$102 of the population, can consider

probability constant

### The shape, mean, standard deviation of the Geometric Distribution

The Geometric distribution is a distribution so it has a shape which has a mean and standard deviation.

p = 0.2geometpdf(0.2,1) = .200

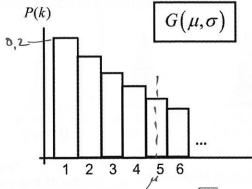
geometpdf(0.2,2) = .160

geometpdf(0.2,3) = .128geometpdf(0.2,4) = .102

geometpdf(0.2,5) = .082

geometpdf(0.2,6) = .066

(Math box (p.388) has an interesting derivation for the mean.)



starts with probability pof success on 1st trial then gots progressively less likely to take longer to find success.

#### The shape, mean, standard deviation of the Binomial Distribution

The Binomial distribution is also a distribution and has a shape, a mean, and standard deviation. The shape depends upon the probability of success and the number of trials.

$$p = 0.1, n = 5$$

binompdf 
$$(5,0.1,0) = .590$$

binompdf 
$$(5,0.1,1) = .320$$

$$binompdf(5,0.1,2) = .073$$

binompdf 
$$(5,0.1,3) = .008$$

binompdf 
$$(5,0.1,4) = .00045$$

11 2 3 4 5

 $\sigma = \sqrt{npq}$ 

binompdf(5,0.1,5) = .00001(Math box (p.392) has an interesting  $\mu = np$ derivation for the mean and standard

### The shape of the Binomial Distribution - varying p

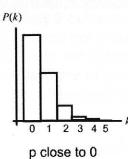
Changing the probability of success, p, changes the shape...

p = 0.1, n = 5

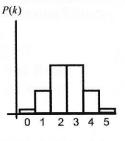
deviation.)

$$p = 0.5, n = 5$$

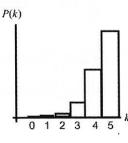
$$p = 0.9, n = 5$$



skewed right



p close to 0.5 symmetric



p close to 1 skewed left

(imagine flipping a coin 5 times with different probability of 'heads')

o see distribution!

u = (5)(-1) = .5  $T = \sqrt{5}\sqrt{.1}\sqrt{.9} = .6708$ 

U 12= binsmpdf (5,1,41)

### The shape of the Binomial Distribution - varying n

As the number of trials, n. increases, the shape of the Binomial distribution approaches the shape of a Normal distribution:

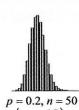


$$= 0.2, n = 5$$
  $p = 0.2, n =$ 



$$p = 0.2, n = 20$$

$$(np = 4)$$





(np = 10)(np = 20)If  $np \ge 10$  and  $nq \ge 10$ 

the Binomial model is

approximately Normal.

#### The "Success/Failure Condition"

If we expect at least 10 successes and 10 failures we can use a Normal model to approximate the Binomial model.

(Math box (p.395) explains this condition in more detail.)

(see practice packet for examples of approximating a Binomial distribution with a Normal model)

# Summary of probability models

### Binomial Model (Bernoulli trials) Setting

1) Only 2 outcomes (success/failure)

2) p does not change

3) Trials are independent

binompdf (n, p, k) = exactly k successes out of n trials

4) Fixed number of trials

binomcdf (n, p, k) = at most k successes out of n trials

Can approximate Binomial  $B(\mu, \sigma)$  with Normal  $N(\mu, \sigma)$  if  $np \ge 10$  and  $nq \ge 10$ (np = #successes, nq = #failures)

 $\mu = np$ 

# Geometric Model (Bernoulli trials) Setting

$$\mu = \frac{1}{p}$$

$$\sigma = \sqrt{\frac{q}{p^2}}$$

 $\sigma = \sqrt{npq}$ 

1) Only 2 outcomes (success/failure)

2) p does not change

3) Trials are independent

geometpdf  $(p,k) = 1^{st}$  success is on  $k^{th}$  trial

4) Number of trials not fixed (continue until first success)

geometedf  $(p,k) = 1^{st}$  success is on or before  $k^{th}$  trial

where n = number of trials

k = number of successes

p = probability of success for a single trial

q = probability of failure for a single trial

q = 1 - p

Bernoulli Trials can be considered independent if sample is <10% of the entire population.