Unit 7 Formulas/Info you can use on the test

Hypothesis tests

1) Hypotheses
2) Conditions
3) Calculate p-value
4) Conclusion paragraph:

With significance of $.05, \mathrm{p}$-value $=0.02$
is low so we reject Ho.
We do have sufficient statistical evidence to conclude (Ha).

Confidence Intervals

1) Conditions
2) Calculate confidence interval
3) Conclusion sentence:

We are 90% confident that the true difference in SAT scores (after-before) is between 25 and 36 Points, on average.

Regression LSRL:

$\hat{y}=a+b x \quad x:$ defined $w /$ units
y : defined $w /$ units

Regression example wording:

Slope, b: For every 1 additional inch in height, the number of steps decrease by 0.573 steps, on average.
Intercept, a: A person who is zero inches tall is predicted to take 53.8 steps, on average.
Correlation coefficient, \mathbf{r} : There is a linear, negative, strong relationship between steps and height.
Coefficient of determination, r^{2} : About 76\% of the variation in number of steps is explained by the LSRL which relates number of steps to height.

Standard deviation of residuals, s: The average difference between actual number of steps and predicted number of steps (for each given height) is 1.58 steps.

Standard deviation of slopes, s_{b} (for inference): If we took many samples and computed LSRLs for each, these LSRLs would each have a slope b . The standard deviation of these slopes would be 3.4 steps/inch.

Common z^{*} values: $90 \%: z^{*}=1.64,95 \%: z^{*}=1.96,99 \%: z^{*}=2.576$

Success/Fail? Percentages? Inference for Proportions	Means of numbers? Inference for Means	Bivariate (y vs. x) data? Inference for Regression LSRL Slope	
		t-distributions $\mathrm{df}=\mathrm{n}-2$ t-statistic: (statistic) (parameter $t=\frac{b-\beta}{s_{b}}$	
Z-statistics Normal distributions (no df)	df $=$ TI calc $\quad \mathrm{df}=\mathrm{n}-1$ t -statistics, t distributions or if $\mathrm{n}>25: Z$-statistics, Normal distributions	$S_{b}=$ standard error of slope $S=$ standard error of residuals usually $\beta_{0}=0$, so $t=\frac{b}{s_{b}}$	
Hypotheses: 1 proportion: 1PropZTest/Int $\begin{aligned} & H_{0}: p=p_{0} \\ & H_{A}: p>p_{0}(\text { or }<, \neq) \end{aligned}$ 2 proportions: 2PropZTest/Int $\begin{aligned} & H_{0}: p_{1}=p_{2}\left(p_{1}-p_{2}=0\right) \\ & H_{A}: p_{1}>p_{2}\left(p_{1}-p_{2}>0\right)(\text { or }<, \neq) \end{aligned}$	1 mean: T-Test/T-Interval $\begin{aligned} & H_{0}: \mu=\mu_{0} \\ & H_{A}: \mu>\mu_{0}(\text { or }<, \neq) \end{aligned}$ 2 mean (independent): 2SampTTest/Int $H_{\mathrm{o}}: \mu_{1}=\mu_{2}\left(\mu_{1}-\mu_{2}=0\right)$ $H_{A}: \mu_{1}>\mu_{2}\left(\mu_{1}-\mu_{2}>0\right)(o r<, z)$ 2 mean (matched pairs): TTest/Int on diffs $\begin{aligned} & H_{0}: \mu_{D}=0 \\ & H_{A}: \mu_{D}>0(\text { or }<, \neq) \end{aligned} \quad \mu_{D}=\text { mean of diffs }$	slope: LinRegTTest/Int $H_{0}: \beta=0$ (no association) $H_{A}: \beta \neq 0($ or $<,>)($ association $)$ $C I: b \pm\left(t^{*}\right)\left(s_{b}\right)$	GOF: X ${ }^{2}$ GOF-test (obs in L1, exp in L2) H_{o} : Observed distribution of counts same as expected. H_{A} : Observed distribution of counts not same as expected. Independence: X^{2}-Test (2D data in matrix A) H_{0} : Row and column variables are independent. H_{A} : Row and column variables are not independent. Homogeneity: X^{2}-Test (2D data in matrix A) H_{0} : The distribution of H_{A} : The distribution of \qquad \qquad is the same among all populations. is not the same among all populations
```Conditions: 1 proportion: SRS, n<10%pop, success/fail>10 2 proportions: For each group... SRS, n<10%pop, success/fail >10 Groups independent of each other```	1 mean   SRS, $\mathrm{n}<10 \%$ pop, Nearly Normal 2 means (indep): Groups independent For each group...   SRS, $\mathrm{n}<10 \%$ pop, Nearly Normal 2 means (matched): How matched?   SRS, $n<10 \%$ pop, diffs are Nearly Normal	Straight enough   Residuals show no pattern or fanning   Residuals are Nearly Normal	All cell expected counts are $>5$ - or -   $80 \%$ of cells' expected counts are > 5 and none of the expected counts are 0

## Random Variable

For one population:

$$
\hat{p} \quad \mu_{\hat{p}}=p \quad \sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}} \quad s_{\hat{p}}=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

For two populations:

$$
\hat{p}_{1}-\hat{p}_{2} \quad \mu_{\hat{p}_{1}-\hat{p}_{2}}=p_{1}-p_{2}
$$

$$
s_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}
$$

$$
\text { When } p_{1}=p_{2} \text { is assumed : }
$$

$$
\sigma_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}} \quad s_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\hat{p}_{C}\left(1-\hat{p}_{C}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}
$$

$$
\text { where } \hat{p}_{c}=\frac{X_{1}+X_{2}}{n_{1}+n_{2}}
$$

## Sampling distributions for means:

## Random Variable <br> Standard Error* of Sample Statistic

For one population:

$$
\bar{X} \quad \mu_{\bar{X}}=\mu \quad \sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}} \quad s_{\bar{X}}=\frac{s}{\sqrt{n}}
$$

For two populations:

$$
\overline{X_{1}}-\overline{X_{2}} \quad \mu_{\bar{X}_{1}-\overline{X_{2}}}=\mu_{1}-\mu_{2} \quad \sigma_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} \quad s_{\overline{x_{1}-\overline{X_{2}}}}=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}{ }^{2}}{n_{2}}}
$$

## Sampling distributions for regression:

## Random Variable <br> Parameters of Sampling Distribution

Standard Error* of Sample Statistic
For slope:

$$
\begin{array}{rc}
\mu_{b}=\beta & \sigma_{b}=\frac{\sigma}{\sigma_{x} \sqrt{n}} \\
\text { where } & s_{b}=\frac{s}{s_{x} \sqrt{n-1}} \\
\sigma_{x}=\sqrt{\frac{\sum\left(x_{i}-\mu\right)^{2}}{n}} & \text { where } s=\sqrt{\frac{\sum\left(y_{i}-\hat{y}_{i}\right)^{2}}{n-2}}
\end{array}
$$

* Standard deviation is a measure of variability from the theoretical population. Standard error is the estimate of the standard deviation. If the standard deviation of the statistic is assumed to be known, then the standard deviation should be used instead of the standard error.


