Unit 7 Formulas/Info you can use on the test

Hypothesis tests

Hypotheses
 Conditions
 Calculate p-value
 Conclusion paragraph:
 With significance of .05, p-value=0.02
 is low so we reject Ho.
 We do have sufficient statistical evidence
 to conclude (Ha).

Confidence Intervals

- 1) Conditions
- 2) Calculate confidence interval
- 3) Conclusion sentence:

We are 90% confident that the true difference in SAT scores (after-before) is between 25 and 36 Points, on average.

Regression LSRL:

 $\hat{y} = a + bx$ x : defined w / unitsy : defined w / units

Regression example wording:

<u>Slope, b</u>: For every 1 additional inch in height, the number of steps decrease by 0.573 steps, on average.

Intercept, a: A person who is zero inches tall is predicted to take 53.8 steps, on average.

Correlation coefficient, r: There is a linear, negative, strong relationship between steps and height.

<u>Coefficient of determination</u>, r^2 : About 76% of the variation in number of steps is explained by the LSRL which relates number of steps to height.

<u>Standard deviation of residuals, s:</u> The average difference between actual number of steps and predicted number of steps (for each given height) is 1.58 steps.

<u>Standard deviation of slopes, s_b (for inference)</u>: If we took many samples and computed LSRLs for each, these LSRLs would each have a slope b. The standard deviation of these slopes would be 3.4 steps/inch.

<u>Common z* values</u>: 90%: z*=1.64, 95%: z*=1.96, 99%: z*=2.576

Counts? χ^2 - statisticsInference for Counts χ^2 distributions1 col (or row)>1 col (or row)(compared to expected %)>1 col (or row)Goodness1 populationof Fit1 populationdf = #categories - 1df = (#rows - 1)(#cols - 1) $\chi^2 = \sum \frac{(obs - exp)^2}{expected}$ expected = (row total)(col total)	$\begin{array}{l} \hline \hline GOF: \ X^2 GOF-test (obs in L1, exp in L2) \\ \hline H_a: Observed distribution of counts same as expected. \\ \hline H_a: Observed distribution of counts not same as expected. \\ \hline H_a: Observed distribution of counts not same as expected. \\ \hline Independence: X^2-Test (2D data in matrix A) \\ \hline H_a: Row and column variables are independent. \\ \hline H_a: Row and column variables are independent. \\ \hline H_a: The distribution of is the same among all populations. \\ \hline H_a: The distribution of is not the same among all populations. \\ \hline \hline H_a: The distribution of is not the same among all populations. \\ \hline \hline H_a: The distribution of is not the same among all populations. \\ \hline \hline H_a: The distribution of is not the same among all populations. \\ \hline \hline H_a: The distribution of is not the same among all populations. \\ \hline \hline H_a: The distribution of is not the same among all populations. \\ \hline \hline \hline H_a: The distribution of is not the same among all populations. \\ \hline \hline \hline H_a: The distribution of is not the same among all populations. \\ \hline \hline \hline H_a: The distribution of is not the same among all populations. \\ \hline \hline \hline H_a: The distribution of is not the same among all populations. \\ \hline \hline \hline H_a: The distribution of is not the same among all populations. \\ \hline \hline \hline \hline H_a: The distribution of is not the same among all populations. \\ \hline \hline \hline H_a: The distribution of is not the same among all populations. \\ \hline \hline \hline H_a: The distribution of is not the same among all populations. \\ \hline \hline \hline H_a: The distribution of is not the same among all populations. \\ \hline \hline \hline \hline H_a: The distribution of is not the same among all populations. \\ \hline \hline \hline \hline H_a: The distribution black the same among all populations. \\ \hline \hline \hline H_a: The distribution black the same among all populations. \\ \hline \hline \hline \hline H_a: The distribution black the same among all populations. \\ \hline \hline \hline H_a: The distribution the the distribution black the same among all populations. \\ \hline \hline \hline$	All cell expected counts are > 5 - or - 80% of cells' expected counts are > 5 and none of the expected counts are 0
Bivariate (y vs. x) data? Inference for Regression LSRL Slope t-distributions (parameter) df = n - 2 (statistic) / t-statistic: $t = \frac{b - \beta}{s_b}$ S_b = standard error of slope S = standard error of slope S = standard error of residuals usually $\beta_0 = 0$, so $t = \frac{b}{s_b}$	slope: LinRegTTest/Int $H_0: \beta = 0 (no association)$ $H_A: \beta \neq 0 (or <,>)(association)$ $CI: b \pm (t^*)(s_h)$	Straight enough Residuals show no pattern or fanning Residuals are Nearly Normal
Means of numbers? Inference for Means df = n - 1 2 Sample Matched Pair df = T1 calc df = n - 1 t-statistics, t distributions or if n>25: Z-statistics, Normal distributions	$\frac{1 \text{ mean: } \text{T-Test/T-Interval}}{H_{o}: \mu = \mu_{o}}$ $H_{a}: \mu > \mu_{o} (or <, \neq)$ $\frac{2 \text{ mean (independent): } 2\text{SampTTest/Int}}{H_{o}: \mu_{i} = \mu_{2} (\mu_{i} - \mu_{2} = 0)}$ $H_{A}: \mu_{i} > \mu_{2} (\mu_{i} - \mu_{2} > 0)(or <, \neq)$ $H_{o}: \mu_{D} = 0$ $H_{A}: \mu_{D} > 0(or <, \neq)$ $\mu_{D} = \text{mean of diffs}$	1 mean: SRS, n<10%pop, Nearly Normal
Success/Fail? Percentages? Inference for Proportions 1 Proportion 2 Proportions C-statistics Normal distributions (no df)	Hypotheses: $\frac{1 \text{ proportion: } 1 \text{ PropZTest/Int}}{H_0 : p = p_0}$ $H_A : p > p_0 (or <, \#)$ $\frac{2 \text{ proportions: } 2 \text{ PropZTest/Int}}{H_0 : p_1 = p_2 (p_1 - p_2 = 0)}$ $H_A : p_1 > p_2 (p_1 - p_2 > 0) (or <, \#)$	Conditions: 1 proportion: SRS, n<10%pop, success/fail >10 2 proportions: For each group SRS, n<10%pop, success/fail >10 Groups independent of each other

Sampling distributions for proportions:

 $s_{\hat{p}} = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

S

$$\hat{p}$$
 $\mu_{\hat{p}} = p$ $\sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$

For two populations:

$$\begin{split} \hat{p}_{1} - \hat{p}_{2} & \mu_{\hat{p}_{1} - \hat{p}_{2}} = p_{1} - p_{2} \\ \sigma_{\hat{p}_{1} - \hat{p}_{2}} = \sqrt{\frac{p_{1}(1 - p_{1})}{n_{1}} + \frac{p_{2}(1 - p_{2})}{n_{2}}} \\ \sigma_{\hat{p}_{1} - \hat{p}_{2}} = \sqrt{\frac{p_{1}(1 - p_{1})}{n_{1}} + \frac{p_{2}(1 - p_{2})}{n_{2}}} \\ \sigma_{\hat{p}_{1} - \hat{p}_{2}} = \sqrt{\frac{p_{1}(1 - p_{1})}{n_{1}} + \frac{p_{2}(1 - p_{2})}{n_{2}}} \\ \sigma_{\hat{p}_{1} - \hat{p}_{2}} = \sqrt{\frac{p_{1}(1 - p_{1})}{n_{1}} + \frac{p_{2}(1 - p_{2})}{n_{2}}} \\ \sigma_{\hat{p}_{1} - \hat{p}_{2}} = \sqrt{\frac{p_{1}(1 - p_{1})}{n_{1}} + \frac{p_{2}(1 - p_{2})}{n_{2}}} \\ \sigma_{\hat{p}_{1} - \hat{p}_{2}} = \sqrt{\frac{p_{1}(1 - p_{1})}{n_{1}} + \frac{p_{2}(1 - p_{2})}{n_{2}}} \\ \sigma_{\hat{p}_{1} - \hat{p}_{2}} = \sqrt{\frac{p_{1}(1 - p_{1})}{n_{1}} + \frac{p_{2}(1 - p_{2})}{n_{2}}} \\ \sigma_{\hat{p}_{1} - \hat{p}_{2}} = \sqrt{\frac{p_{1}(1 - p_{1})}{n_{1}} + \frac{p_{2}(1 - p_{2})}{n_{2}}} \\ \sigma_{\hat{p}_{1} - \hat{p}_{2}} = \sqrt{\frac{p_{1}(1 - p_{1})}{n_{1}} + \frac{p_{2}(1 - p_{2})}{n_{2}}} \\ \sigma_{\hat{p}_{1} - \hat{p}_{2}} = \sqrt{\frac{p_{1}(1 - p_{1})}{n_{1}} + \frac{p_{2}(1 - p_{2})}{n_{2}}} \\ \sigma_{\hat{p}_{1} - \hat{p}_{2}} = \sqrt{\frac{p_{1}(1 - p_{1})}{n_{1}} + \frac{p_{2}(1 - p_{2})}{n_{2}}} \\ \sigma_{\hat{p}_{1} - \hat{p}_{2}} = \sqrt{\frac{p_{1}(1 - p_{1})}{n_{1}} + \frac{p_{2}(1 - p_{2})}{n_{2}}} \\ \sigma_{\hat{p}_{1} - \hat{p}_{2}} = \sqrt{\frac{p_{1}(1 - p_{1})}{n_{1}} + \frac{p_{2}(1 - p_{2})}{n_{2}}} \\ \sigma_{\hat{p}_{1} - \hat{p}_{2}} = \sqrt{\frac{p_{1}(1 - p_{2})}{n_{1}} + \frac{p_{2}(1 - p_{2})}{n_{2}}} \\ \sigma_{\hat{p}_{1} - \hat{p}_{2}} = \sqrt{\frac{p_{1}(1 - p_{2})}{n_{1}} + \frac{p_{2}(1 - p_{2})}{n_{2}}} \\ \sigma_{\hat{p}_{1} - \hat{p}_{2}} = \sqrt{\frac{p_{1}(1 - p_{2})}{n_{2}} + \frac{p_{2}(1 - p_{2})}{n_{2}}} \\ \sigma_{\hat{p}_{2} - \hat{p}_{2}} = \sqrt{\frac{p_{2}(1 - p_{2})}{n_{2}} + \frac{p_{2}(1 - p_{2})}{n_{2}}} \\ \sigma_{\hat{p}_{2} - \hat{p}_{2} - \hat{p}_{2}} = \sqrt{\frac{p_{2}(1 - p_{2})}{n_{2}}} \\ \sigma_{\hat{p}_{2} - \hat{p}_{2} - \hat{p}_{2}} = \sqrt{\frac{p_{2}(1 - p_{2})}{n_{2}}} \\ \sigma_{\hat{p}_{2} - \hat{p}_{2} - \hat{p}_{2}} = \sqrt{\frac{p_{2}(1 - p_{2})}{n_{2}}} \\ \sigma_{\hat{p}_{2} - \hat{p}_{2} - \hat{p}_{2} - \hat{p}_{2} - \hat{p}_{2}} \\ \sigma_{\hat{p}_{2} - \hat{p}_{2} - \hat{p}_{2}} = \sqrt{\frac{p_{2}(1 - p_{2})}{n_{2}}} \\ \sigma_{\hat{p}_{2} - \hat{p}_{2} - \hat{p}_{2$$

Sampling distributions for means:

 Random Variable
 Parameters of Sampling Distribution
 Standard Error* of Sample Statistic

 For one population:

$$\overline{X}$$
 $\mu_{\overline{X}} = \mu$
 $\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$
 $s_{\overline{X}} = \frac{s}{\sqrt{n}}$

 For two populations:
 $\overline{X}_1 - \overline{X}_2$
 $\mu_{\overline{X}_1 - \overline{X}_2} = \mu_1 - \mu_2$
 $\sigma_{\overline{X}_1 - \overline{X}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
 $s_{\overline{X}_1 - \overline{X}_2} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

Sampling distributions for regression:

Random Variable Parameters of Sampling Distribution Standard Error* of Sample Statistic For slope:

b
$$\mu_b = \beta$$
 $\sigma_b = \frac{\sigma}{\sigma_x \sqrt{n}}$
where $s = \sqrt{\frac{\sum (x_i - \mu)^2}{n}}$ $s_b = \frac{\sigma}{s_x \sqrt{n-1}}$
where $s = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-2}}$
 $\sigma_x = \sqrt{\frac{\sum (x_i - \mu)^2}{n}}$ and $s_x = \sqrt{\frac{\sum (x_i - \bar{x})^2}{n-1}}$

* Standard deviation is a measure of variability from the theoretical population. Standard error is the estimate of the standard deviation. If the standard deviation of the statistic is assumed to be known, then the standard deviation should be used instead of the standard error.

Two tail probability	0.20	0.10	0.05	0.02	0.01	
One tail probability	0.10	0.05	0.025	0.01	0.005	
One tan probability	df					df
lable I		6.014	12 706	31 871	63.657	1
Values of t.	1 3.078	6.514	4 202	6.965	9 925	2
a a a	2 1.886	2.920	2 192	4 541	5.841	3
3	3 1.638	2.353	3.104	3 747	4 604	4
	4 1.533	2.132	2.770	5.7 ±7	1.001	-
\sim	5 1.476	2.015	2.571	3.365	4.032	5
	6 1.440	1.943	2.447	3.143	3.707	7
g / g	7 1.415	1.895	2.365	2.998	3.499	0
	8 1.397	1.860	2.306	2.896	3.355	0
$-t_{a'2} = 0 = t_{a'2}$	9 1.383	1.833	2.262	2.821	3.250	. 9
Two tails	10 1.372	1.812	2.228	2.764	3.169	10
	17 1.363	1.796	2.201	2.718	3.106	11
-	12 1.356	1.782	2.179	2.681	3.055	12
\wedge	13 1.350	1.771	2.160	2.650	3.012	13
	14 1.345	1.761	2.145	2.624	2.977	14
	15 1 241	1 753	2.131	2.602	2.947	15
	16 1 337	1 746	2.120	2.583	2.921	16
	17 1 222	1 740	2.110	2.567	2.898	17
One tall	10 1 220	1 734	2 101	2.552	2.878	18
	10 1.330	1.729	2.093	2.539	2.861	19
	10 1005	1 795	2.086	2,528	2.845	20
	20 1.325	1.723	2.080	2 518	2.831	21
	21 1.323	1.741	2.000	2.508	2.819	22
	22 1.321	1.717	2.069	2.500	2.807	23
	23 1.319	1 711	2.064	2.492	2.797	24
	24 1.510	1 700	2 060	2 485	2.787	25
	25 1.316	1.708	2.056	2.479	2.779	26
	26 1.315	1.700	2.050	2 473	2.771	27
	27 1.314	1.703	2.052	2 467	2 763	28
	28 1.313	1.701	2.046	2.462	2.756	29
	29 1.311	1.099	2.040	2.402	0.750	30
	30 1.310	1.697	2.042	2.45/	2.750	32
	32 1.309	1.694	2.037	2.449	2.730	35
	35 1.306	1.690	2.030	2.438	2.725	40
	40 1.303	1.684	2.021	2.423	2.704	45
	45 1.301	1.679	2.014	2.412	2.690	75
	50 1.299	1.676	2.009	2.403	2.678	50
	60 1.296	1.671	2.000	2.390	2.660	60
急	75 1.293	1.665	1.992	2.377	2.643	/5
10	100 1.290	1.660	1.984	2.364	2.626	100
	120 1.289	1.658	1.980	2.358	2.617	120
	140 1.288	1.656	1.977	2,353	2.611	140
	180 1.286	1.653	1.973	2.347	2.603	180
	250 1.285	1.651	1.969	2.341	2.596	250
	400 1 284	1.649	1.966	2.336	2.588	400
1	000 1.282	1.646	1.962	2.330	2.581	1000
•	• 1.282	1.645	1.960	2.326	2.576	~~~~
	1 000	0.09/	95%	98%	99%	