Unit 6 Formulas/Info you can use on the test

<u>1-Sample</u>	2-Sample (independent groups) <u>"Difference of Means"</u>	2-Sample (matched pairs) <u>"Mean of Differences"</u>
$df = n - 1 \qquad c$	$lf = (big \ formula - use \ calculator)$	df = n - 1 (working only with differences)
$H_0: \mu = \mu_0$	$H_0: \mu_1 = \mu_2$	$H_0: \mu_D = 0$
$H_A: \mu(\langle,\rangle,\neq)\mu_0$	$H_{A}: \mu_{1}(<,>,\neq) \mu_{2}$	$(define \ \mu_D \ with \ direction)$
Conditions:	Conditions:	Conditions:
1) SRS	1) SRSs	1) SRS
2) indep w/in sample	2) groups indep	2) matched pairs (matched by ?)
3) n<10% pop	3) both $n < 10\%$ pops	3) n<10%pop
4) sample nearly norn	hal 4) both samples nearly normal	4) differences nearly normal
Nearly Normal? $n \ge$	40 (assume by sample size)	

 $15 \le n < 40$ Check with histogram

Test statistic:

 $t_{\overline{X}_1-\overline{X}_2} = \frac{\left(\overline{X}_1 - \overline{X}_2\right) - 0}{SE_{\overline{X}_1-\overline{X}_2}}$

n < 15 Check with histogram plus normal probability plot (NPP) if skewed If there are gaps in histogram, use boxplot to verify no outliers

TTest	2-SampTTest	TTest (on differences)
TInterval	2-SampTInt	TInterval (on differences)

Test statistic:

 $t_D = \frac{\overline{x}_D - 0}{SE_D}$

Test statistic:

$$t = \frac{\overline{x} - \mu_0}{SE_{\overline{x}}}$$

Confidence Interval Formulas:

$\overline{x} \pm t * \left(\frac{s}{\sqrt{n}}\right)$	$(\overline{x}_1 - \overline{x}_2) \pm t * \left(\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \right)$	$\overline{x}_D \pm t * \left(\frac{s_D}{\sqrt{n}}\right)$
--	---	--

Wording formats

Explaining hypothesis test conclusion:

With significance of .05, p-value=0.02 is low so we reject Ho. We <u>do</u> have sufficient statistical evidence to conclude (Ha).

Explaining p-value: If the difference between drug and placebo was actually zero, our p-value of .09 means there is a 9% probability of this sample's result (drug 3.4 mm higher <u>mean</u> tumor reduction) or higher occurring just due to chance.

Explaining confidence interval in context:

We are 90% confident that the true average improvement in SAT scores is between 25 and 36 points.

Explaining confidence level: If we were to take many samples of size 40 and compute confidence intervals for each, 90% of the confidence intervals would contain the true <u>mean</u> improvement in SAT score.

<u>Common z* values</u>: 90%: z*=1.64, 95%: z*=1.96, 99%: z*=2.576

Sampling distributions for proportions:Random VariableParameters of Sampling Distribution

Standard Error* of Sample Statistic

 $s_{\hat{p}} = \sqrt{\frac{\hat{p}\left(1-\hat{p}\right)}{2}}$

For one population:

 \hat{p}

$$\mu_{\hat{p}} = p \qquad \qquad \sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

For two populations:

$$\hat{p}_{1} - \hat{p}_{2} \qquad \mu_{\hat{p}_{1} - \hat{p}_{2}} = p_{1} - p_{2} \qquad s_{\hat{p}_{1} - \hat{p}_{2}} = \sqrt{\frac{\hat{p}_{1}(1 - \hat{p}_{1})}{n_{1}} + \frac{\hat{p}_{2}(1 - \hat{p}_{2})}{n_{2}}} \qquad When \ p_{1} = p_{2} \ is \ assumed : \\ \sigma_{\hat{p}_{1} - \hat{p}_{2}} = \sqrt{\frac{p_{1}(1 - p_{1})}{n_{1}} + \frac{p_{2}(1 - p_{2})}{n_{2}}} \qquad When \ p_{1} = p_{2} \ is \ assumed : \\ s_{\hat{p}_{1} - \hat{p}_{2}} = \sqrt{\hat{p}_{c}(1 - \hat{p}_{c})(\frac{1}{n_{1}} + \frac{1}{n_{2}})} \\ where \ \hat{p}_{c} = \frac{X_{1} + X_{2}}{n_{1} + n_{2}}$$

 Sampling distributions for means:
 Standard Error* of Sampling Distribution

 Random Variable
 Parameters of Sampling Distribution
 Standard Error* of Sample Statistic
For one population:

\overline{X}	$\mu_{\overline{X}} = \mu$	$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$	$s_{\overline{X}} = \frac{s}{\sqrt{n}}$
For two populations:			-
$\overline{X_1} - \overline{X_2}$	$\mu_{\overline{X_1}-\overline{X_2}} = \mu_1 - \mu_2$	$\sigma_{\overline{X}_1-\overline{X}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$	$s_{\overline{x_1-x_2}} = \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$

0.20 0.10 0.05 0.02	0.01	
0.10 0.05 0.025 0.01	0.005	
e df		df
a a a a a a a a a a a a a a a a a a a	63.657	1
1 3.078 6.314 12.700 51.021	9.925	2
2 1.886 2.920 4.505 0.500	5.841	3
3 1.638 2.353 3.162 4.541	4 604	4
4 1.533 2.132 2.778 5.745	1.001	6
5 1.476 2.015 2.571 3.365	4.032	5
6 1.440 1.943 2.447 3.143	3.707	7
7 1.415 1.895 2.365 2.998	3.499	0
8 1.397 1.860 2.306 2.896	3.355	0
9 1.383 1.833 2.262 2.821	3.250	
10 1.372 1.812 2.228 2.764	3.169	10
17 1.363 1.796 2.201 2.718	3.106	11
12 1.356 1.782 2.179 2.681	3.055	12
13 1.350 1.771 2.160 2.650	3.012	13
14 1.345 1.761 2.145 2.624	2.977	14
15 1.241 1.753 2.131 2.602	2.947	15
= 15 1.341 1.755 2.151 2.583	2.921	16
16 1.557 1.740 2.110 2.567	2.898	17
10 1.000 1.724 2.101 2.552	2.878	18
18 1.350 1.754 2.101 2.539	2.861	19
19 1.526 1.725 2.676 2.528	2.845	20
20 1.325 1.725 2.080 2.528	2.831	21
21 1.323 1.721 2.080 2.510	2 819	22
22 1.321 1.717 2.074 2.500	2.807	2.3
23 1.319 1.714 2.069 2.000	2.797	24
24 1.318 1.711 2.004 2.495	2 787	25
25 1.316 1.708 2.060 2.460	2 779	26
26 1.315 1.706 2.056 2.479	2 771	27
27 1.314 1.703 2.052 2.473	2.771	28
28 1.313 1.701 2.048 2.467	2 756	29
29 1.311 1.699 2.043 2.482	2.750	20
30 1.310 1.697 2.042 2.457	2.750	22
32 1.309 1.694 2.037 2.449	2.738	35
35 1.306 1.690 2.030 2.438	2.725	
40 1.303 1.684 2.021 2.423	2.704	45
45 1.301 1.679 2.014 2.412	2.690	50
50 1.299 1.676 2.009 2.403	2.678	50
60 1.296 1.671 2.000 2.390	2.660	00
75 1.293 1.665 1.992 2.377	2.643	100
100 1.290 1.660 1.984 2.364	2.626	120
120 1.289 1.658 1.980 2.358	2.617	120
140 1.288 1.656 1.977 2.353	2.611	140
180 1.286 1.653 1.973 2.347	2.603	180
250 1.285 1.651 1.969 2.341	2.596	250
400 1.284 1.649 1.966 2.336	2.588	400
1000 1.282 1.646 1.962 2.330	2.581	1000
∞ 1.282 1.645 1.960 2.326	2.576	00
ance laught 80% 90% 95% 98%	99%	