1-Sample

$$
\begin{aligned}
& d f=n-1 \\
& H_{0}: \mu=\mu_{0} \\
& H_{A}: \mu(<,>, \neq) \mu_{0}
\end{aligned}
$$

2-Sample (independent groups)
"Difference of Means"
$d f=($ big formula - use calculator $)$

$$
\begin{array}{ll}
H_{0}: \mu=\mu_{0} & H_{0}: \mu_{1}=\mu_{2} \\
H_{A}: \mu(<,>, \neq) \mu_{0} & H_{A}: \mu_{1}(<,>, \neq) \mu_{2}
\end{array}
$$

Conditions:

Conditions:

1) SRS
2) indep w/in sample
3) SRSs
4) groups indep
5) $n<10 \%$ pop
6) both $n<10 \%$ pops
7) sample nearly normal
8) both samples nearly normal

Nearly Normal? $n \geq 40$ (assume by sample size)

$$
15 \leq n<40 \text { Check with histogram }
$$

$$
n<15 \text { Check with histogram plus normal probability plot (NPP) if skewed }
$$

If there are gaps in histogram, use boxplot to verify no outliers

TTest

TInterval

Test statistic:

$$
t=\frac{\bar{x}-\mu_{0}}{S E_{\bar{X}}}
$$

2-SampTTest
2-SampTInt
Test statistic:

$$
t_{\bar{X}_{1}-\bar{X}_{2}}=\frac{\left(\bar{X}_{1}-\bar{X}_{2}\right)-0}{S E_{\bar{X}_{1}-\bar{X}_{2}}}
$$

2-Sample (matched pairs) "Mean of Differences" $d f=n-1$ (working only with differences)
$H_{0}: \mu_{D}=0$
$H_{A}: \mu_{D}(<,>, \neq) 0$
(define μ_{D} with direction)

Conditions:

1) SRS
2) matched pairs (matched by ?)
3) $n<10 \% p o p$
4) differences nearly normal

Confidence Interval Formulas:

$$
\bar{x} \pm t *\left(\frac{s}{\sqrt{n}}\right) \quad\left(\bar{x}_{1}-\bar{x}_{2}\right) \pm t *\left(\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}\right) \quad \bar{x}_{D} \pm t *\left(\frac{s_{D}}{\sqrt{n}}\right)
$$

TTest (on differences)
TInterval (on differences)
Test statistic:

$$
t_{D}=\frac{\bar{x}_{D}-0}{S E_{D}}
$$

Wording formats

Explaining hypothesis test conclusion:
With significance of .05 , p-value $=0.02$ is low so we reject Ho.
We do have sufficient statistical evidence to conclude (Ha).
Explaining p-value: If the difference between drug and placebo was actually zero, our p-value of .09 means there is a 9% probability of this sample's result (drug 3.4 mm higher mean tumor reduction) or higher occurring just due to chance.

Explaining confidence interval in context:
We are 90% confident that the true average improvement in SAT scores is between 25 and 36 points.
Explaining confidence level: If we were to take many samples of size 40 and compute confidence intervals for each, 90% of the confidence intervals would contain the true mean improvement in SAT score.

Common z^{*} values: $90 \%: z^{*}=1.64,95 \%: z^{*}=1.96,99 \%: z^{*}=2.576$

$$
\hat{p} \quad \mu_{\hat{p}}=p \quad \sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}} \quad s_{\hat{p}}=\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

For two populations:

$$
\hat{p}_{1}-\hat{p}_{2}
$$

$$
\mu_{\hat{p}_{1}-\hat{p}_{2}}=p_{1}-p_{2}
$$

$s_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}$

When $p_{1}=p_{2}$ is assumed :
$\sigma_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\frac{p_{1}\left(1-p_{1}\right)}{n_{1}}+\frac{p_{2}\left(1-p_{2}\right)}{n_{2}}}$
$s_{\hat{p}_{1}-\hat{p}_{2}}=\sqrt{\hat{p}_{C}\left(1-\hat{p}_{C}\right)\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)}$ where $\hat{p}_{C}=\frac{X_{1}+X_{2}}{n_{1}+n_{2}}$

Sampling distributions for means:

Random Variable

For one population:

$$
\bar{X} \quad \mu_{\bar{X}}=\mu \quad \sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}} \quad s_{\bar{X}}=\frac{s}{\sqrt{n}}
$$

For two populations:

$$
\overline{X_{1}}-\overline{X_{2}} \quad \mu_{\overline{X_{1}}-\overline{X_{2}}}=\mu_{1}-\mu_{2} \quad \sigma_{\bar{X}_{1}-\bar{X}_{2}}=\sqrt{\frac{\sigma_{1}^{2}}{n_{1}}+\frac{\sigma_{2}^{2}}{n_{2}}} \quad S_{\bar{x}_{1}-\overline{X_{2}}}=\sqrt{\frac{s_{1}^{2}}{n_{1}}+\frac{s_{2}^{2}}{n_{2}}}
$$

