Study Guide for AP Statistics Semester 1 Final Exams

Unit 1:

Histograms

Boxplots:

You can put data values in L1, counts in L2, 1-Var Stats to get statistics from a histogram (use value in middle of column to represent that column).

Normal distributions:

normalcdf (lower, upper, mean, SD) $=$ area between boundaries
invNorm(leftarea, mean, SD) = upper boundary
(label these values in FRQs)
population symbols:

$$
\text { mean }=\mu
$$

standard deviation $=\sigma$

Stemplots (preserves original data, can show symmetry, outliers, gaps and clusters)

Unit 2:

scatterplot:

residual plot (magnifies differences around the LSRL)
 is appropriate).
residual $=y-\hat{y}$ has no pattern in the residuals (linear model

Correlation Coefficient:
$r=\frac{1}{n-1} \sum Z_{x} Z_{y} \quad$ is a measure of how far points are (in y direction) from the LSRL $\quad-1 \leq r \leq 1$
$r^{2}=$ coefficient of determination $=\%$ of the variation in y that is explained by the LSRL which relates y to x .
Slope for LSRL: $b=r \frac{s_{y}}{s_{x}} \quad$ For an outlier to affect slope of LSRL it must have leverage - horiz distance from (\bar{x}, \bar{y}).

Unit 3:

Sampling Techniques:

- Simple Random Sample (SRS): Select a random subset from the entire population all at once (equally likely).
- Cluster Sampling: Randomly select one or more groups (clusters) and use all in each cluster for the sample.
- Stratified Random Sampling: Select an SRS from each group (strata) to include in the sample.
- Systematic Sampling: Employ a procedure (e.g. every other one) instead of randomness.

Biases:

- Undercoverage Bias: A portion of the population could not be included in the sample.
- Voluntary Response Bias: No preselection of sample - ask for volunteers to join the sample.
- Nonresponse Bias: Researchers choose a sample, but people can opt-out.
- Response Bias: Something about the survey or the way it is used makes people change their responses.

Experiments require treatment imposed by researchers on groups (control of a factor) Good experiments also include: random assignment to groups, control of a factor (by applying a treatment which is different between at least two groups), replication (numbers in the groups).
Optional: You can block on known differences in the subjects (but not required) - reduces variation in response variable. You can employ blinding (subject and/or researchers don't know which subjects receive which treatments) which may require a placebo (fake treatment).

Explanatory variables are called factors (which each have a number of levels). Experimental units/subjects are what receive the treatments and produce results. What is measured is called the Response Variable.

Studies which don't meet criteria for experiment are called observational studies.

Unit 4:

Conditional Probability:
P (video games \mid girl $)=\frac{12}{60}=.20$

event	
The event is always	
contained within	The condition is always just a the conditional
portion of the sample space (the conditional sample	
space).	

The conditional sample space is a portion of the sample space

OR is add (but must subtract any overlap):

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

$$
P(A \cap B)=P(A) \cdot P(B \mid A) \quad P(A \cap B)=P(B) \cdot P(A \mid B)
$$

Picture a part of a tree...

Special Case for OR:
Disjoint (Mutually-Exclusive) Events

$$
P(A \cap B)=0
$$

So the OR formula is simplified...

$$
P(A \cup B)=P(A)+P(B)
$$

Special Case for AND: Independent Events

Test for independent events:

Two events are independent if:

$$
P(B)=P(B \mid A)=P(B \mid \bar{A})
$$

(check any two)
For independent events: $\quad P(B)=P(B \mid A)$

$$
\begin{gathered}
P(A \cap B)=P(A) \cdot P(B \mid A) \quad \text {..simplifies to... } \\
P(A \cap B)=P(A) \cdot P(B)
\end{gathered}
$$

8: Discrete Probability Models

a Binomial distribution can be approximated with a Normal distribution with: $\mu=n p$

$$
\sigma=\sqrt{n p q}
$$

11: Combining Multiple Distributions

Define an algebraic expression for how the source distributions are used to build the new distribution:
$E=A+B-C-D$

The means are always determined by the defining algebraic expression:

$$
\mu_{E}=\mu_{A}+\mu_{B}-\mu_{C}-\mu_{D}
$$

But because each source of variability increases overall variation, the variances always add:

$$
\sigma_{E}^{2}=\sigma_{A}^{2}+\sigma_{B}^{2}+\sigma_{C}^{2}+\sigma_{D}^{2}
$$

However, we must know for certain that the variables are all varying independently of one another. (If not independent, we can find mean but not standard deviation).

Mutuplying/dividing affects both center and spread...

Adding/Subtracting affects only center...

$$
\text { If } Y=a X \pm b \quad \mu_{Y}=a \mu_{X} \pm b \quad \sigma_{Y}=a \sigma_{X}
$$

